首页> 外文期刊>Nature >Intermediates in the transformation of phosphonates to phosphate by bacteria
【24h】

Intermediates in the transformation of phosphonates to phosphate by bacteria

机译:参与细菌将膦酸酯转化为磷酸酯的中间体

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphorus is an essential element for all known forms of life. In living systems, phosphorus is an integral component of nucleic acids, carbohydrates and phospholipids, where it is incorporated as a derivative of phosphate. However, most Gram-negative bacteria have the capability to use phosphonates as a nutritional source of phosphorus under conditions of phosphate starvation1. In these organisms, methylphosphonate is converted to phosphate and methane. In a formal sense, this transformation is a hydrolytic cleavage of a carbon-phosphorus (C-P) bond, but a general enzymatic mechanism for the activation and conversion of alkyl-phosphonates to phosphate and an alkane has not been elucidated despite much effort for more than two decades. The actual mechanism for C-P bond cleavage is likely to be a radical-based transformation2. In Escherichia coli, the catalytic machinery for the C-P lyase reaction has been localized to the phn gene cluster1. This operon consists of the 14 genes phnC, phnD, ..., phnP. Genetic and biochemical experiments have demonstrated that the genes phnG, phnH, ..., phnMencode proteins that are essential for the conversion of phosphonates to phosphate and that the proteins encoded by the other genes in the operon have auxiliary functions1'3"6. There are no functional annotations for any of the seven proteins considered essential for C-P bond cleavage. Here we show that methylphosphonate reacts with MgATP to form a-D-ribose-1-methylphosphonate-5-triphosphate (RPnTP) and adenine. The triphosphate moiety of RPnTP is hydrolysed to pyrophosphate and a-D-ribose-l-methylphosphonate-5-phosphate (PRPn). The C-P bond of PRPn is subsequently cleaved in a radical-based reaction producing α-D-ribose-l,2-cyclic-phosphate-5-phosphate and methane in the presence of S-adenosyl-L-methionine. Substantial quantities of phosphonates are produced worldwide for industrial processes, detergents, herbicides and pharmaceuticals7"9. Our elucidation of the chemical steps for the biodegradation of alkylphos-phonates shows how these compounds can be metabolized and recycled to phosphate.
机译:磷是所有已知生命形式中必不可少的元素。在生物系统中,磷是核酸,碳水化合物和磷脂的组成部分,并以磷酸衍生物的形式掺入其中。但是,大多数革兰氏阴性细菌都有能力在磷酸盐饥饿的情况下使用膦酸酯作为磷的营养来源。在这些生物中,膦酸甲酯转化为磷酸盐和甲烷。从正式意义上讲,这种转化是碳-磷(CP)键的水解裂解,但是,尽管付出了许多努力,但仍未阐明将烷基膦酸酯活化和转化为磷酸酯和烷烃的一般酶机制。二十年。 C-P键断裂的实际机制可能是基于自由基的转化。在大肠杆菌中,C-P裂解酶反应的催化机制已定位于phn基因簇1。该操纵子由14个基因phnC,phnD,...,phnP组成。遗传和生化实验表明,基因phnG,phnH,...,phnMencode是将膦酸酯转化为磷酸盐所必需的蛋白质,并且操纵子中其他基因编码的蛋白质具有辅助功能1'3“ 6。并不是CP键断裂必不可少的7种蛋白质的功能注释,此处我们证明了膦酸甲酯与MgATP反应形成aD-核糖-1-甲基膦酸酯-5-三磷酸(RPnTP)和腺嘌呤。水解成焦磷酸盐和aD-核糖-1-甲基膦酸酯-5-磷酸酯(PRPn),随后在自由基基反应中裂解PRPn的CP键,生成α-D-核糖-1,2-环磷酸-5-酯在世界范围内,大量的膦酸酯被生产用于工业过程,洗涤剂,除草剂和药物7“ 9。我们对烷基膦酸酯生物降解的化学步骤的阐明表明了这些化合物如何被代谢并再循环为磷酸盐。

著录项

  • 来源
    《Nature》 |2011年第7378期|p.570-573|共4页
  • 作者单位

    Department of Chemistry, PO Box 30012, Texas A&M University, College Station, Texas 77843, USA.;

    Department of Chemistry, PO Box 30012, Texas A&M University, College Station, Texas 77843, USA.;

    Department of Chemistry, PO Box 30012, Texas A&M University, College Station, Texas 77843, USA.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号