首页> 外文期刊>Nature >Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface
【24h】

Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface

机译:在液-气界面自组装的二元纳米晶超晶格膜

获取原文
获取原文并翻译 | 示例
           

摘要

The spontaneous organization of multicomponent micrometre-sized colloids or nanocrystals into superlattices is of scientific importance for understanding the assembly process on the nanometre scale and is of great interest for bottom-up fabrication of functional devices. In particular, co-assembly of two types of nanocrystal into binary nanocrystal superlattices (BNSLs) has recently attracted significant attention, as this provides a low-cost, programmable way to design metamaterials with precisely controlled properties that arise from the organization and interactions of the constituent nanocrystal components. Although challenging, the ability to grow and manipulate large-scale BNSLs is critical for extensive exploration of this new class of material. Here we report a general method of growing centimetre-scale, uniform membranes of BNSLs that can readily be transferred to arbitrary substrates. Our method is based on the liquid-air inter-facial assembly of multicomponent nanocrystals and circumvents the limitations associated with the current assembly strategies, allowing integration of BNSLs on any substrate for the fabrication of nanocrystal-based devices. We demonstrate the construction of magnetoresistive devices by incorporating large-area (1.5 mm × 2.5 mm) BNSL membranes; their magnetotransport measurements clearly show that device magnetoresistance is dependent on the structure (stoichiometry) of the BNSLs. The ability to transfer BNSLs also allows the construction of free-standing membranes and other complex architectures that have not been accessible previously.
机译:将多组分微米级胶体或纳米晶体自发组织成超晶格对于理解纳米级的组装过程具有科学重要性,并且对于自下而上制造功能器件非常感兴趣。特别是,将两种类型的纳米晶体共组装为二元纳米晶体超晶格(BNSL)最近引起了广泛的关注,因为这提供了一种低成本,可编程的方法来设计具有精确受控特性的超材料,这些特性是由于纳米晶的组织和相互作用而产生的。组成纳米晶体成分。尽管具有挑战性,但生长和操纵大型BNSL的能力对于广泛探索这种新型材料至关重要。在这里,我们报告了一种生长厘米级的BNSL均匀膜的通用方法,该方法可以轻松转移到任意基质上。我们的方法基于多组分纳米晶体的液-气界面组装,并规避了与当前组装策略相关的局限性,允许将BNSL集成在任何基底上以制造基于纳米晶体的器件。我们通过结合大面积(1.5 mm×2.5 mm)BNSL膜来演示磁阻器件的构造;他们的磁传输测量清楚地表明,器件的磁阻取决于BNSL的结构(化学计量)。转移BNSL的能力还允许构建独立的膜和其他以前无法获得的复杂体系结构。

著录项

  • 来源
    《Nature》 |2010年第7305期|P.474-477|共4页
  • 作者单位

    Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

    rnDepartment of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

    rnDepartment of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

    rnDepartment of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

    rnDepartment of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号