首页> 外文期刊>Nature >Polar patterns of driven filaments
【24h】

Polar patterns of driven filaments

机译:驱动灯丝的极性图

获取原文
获取原文并翻译 | 示例
           

摘要

The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system may thus provide new insight into emerging order in the broad class of active fluids and self-propelled particles.
机译:从动物群到自我推动的微生物再到细胞骨架的各种系统所表现出的集体运动是一种普遍存在且令人着迷的自组织现象。这些系统之间的相似性,例如组分的固有极性,密度依赖性过渡到有序相或存在非常大的密度波动,表明存在着形成图案的通用原理。这个想法之后是在所有描述级别的理论模型:微观或介观模型仅使用一些(最好是简单的)相互作用规则直接绘制局部力和相互作用,而流体动力学极限中的更多宏观方法依赖于系统的一般对称性。所有这些模型都具有宽泛的参数空间,并带有多种可能的模式,其中大多数尚未经过实验验证。相互作用的复杂性和现有实验系统的有限参数控制是阻碍我们理解基本订购原则的主要障碍。在这里,我们展示了由高密度肌动蛋白丝组成的集体运动的出现,该实验由固定分子马达在平面几何结构中推动的高浓度肌动蛋白丝组成。高于临界密度,细丝会自组织以形成具有持续密度调制的连贯运动结构,例如簇,漩涡和相互连接的谱带。这些极性向列结构寿命长,并且长度跨度比其组成大几个数量级。我们的实验方法提供了对所有相关系统参数的控制,并辅以基于代理的模拟,允许将组装和拆卸路径回溯到底层的局部相互作用。我们确定弱和局部对齐的交互作用对于观察到的模式及其动力学形成必不可少。因此,所提出的最小极性图案形成系统可以为活性流体和自推进颗粒的广泛分类中的新兴顺序提供新的见解。

著录项

  • 来源
    《Nature》 |2010年第7311期|P.73-77|共5页
  • 作者单位

    Lehrstuhl fuer Biophysik-E27, Technische Universitaet Muenchen, 85748 Garching, Germany;

    rnAmold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich, Germany;

    rnLehrstuhl fuer Biophysik-E27, Technische Universitaet Muenchen, 85748 Garching, Germany;

    rnAmold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich, Germany;

    rnLehrstuhl fuer Biophysik-E27, Technische Universitaet Muenchen, 85748 Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号