首页> 外文期刊>Nature >Geometry-induced electrostatic trapping of nanometric objects in a fluid
【24h】

Geometry-induced electrostatic trapping of nanometric objects in a fluid

机译:几何诱导流体中纳米物体的静电俘获

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to trap an object-whether a single atom or a macroscopic entity-affects fields as diverse as quantum optics, soft condensed-matter physics, biophysics and clinical medicine. Many sophisticated methodologies have been developed to counter the randomizing effect of Brownian motion in solution, but stable trapping of nanometre-sized objects remains challenging8"10. Optical tweezers are widely used traps, but require sufficiently polarizable objects and thus are unable to manipulate small macro-molecules. Confinement of single molecules has been achieved using electrokinetic feedback guided by tracking of a fluorescent label, but photophysical constraints limit the trap stiffness and lifetime. Here we show that a fluidic slit with appropriately tailored topography has a spatially modulated electrostatic potential that can trap and levitate charged objects in solution for up to several hours. We illustrate this principle with gold particles, polymer beads and lipid vesicles with diameters of tens of nanometres, which are all trapped without external intervention and independently of their mass and dielectric function. The stiffness and stability of our electrostatic trap is easily tuned by adjusting the system geometry and the ionic strength of the solution, and it lends itself to integration with other manipulation mechanisms. We anticipate that these features will allow its use for contact-free confinement of single proteins and macromolecules, and the sorting and fractiona-tion of nanometre-sized objects or their assembly into high-density arrays.
机译:捕获物体的能力(无论是单个原子还是宏观实体)都会影响诸如量子光学,软凝聚态物理,生物物理和临床医学等领域。已经开发出许多复杂的方法来抵消布朗运动在溶液中的随机作用,但是稳定捕获纳米级物体仍然具有挑战性8“ 10。光学镊子被广泛使用,但是需要足够可极化的物体,因此无法操纵小的宏观物体。通过跟踪荧光标记引导的电动反馈实现了对单分子的限制,但是光物理限制了捕集阱的硬度和寿命,在这里我们表明,具有适当剪裁的形貌的流体狭缝具有空间调制的静电势,可以可以将带电物体捕获并悬浮在溶液中长达几个小时,我们用直径为几十纳米的金颗粒,聚合物珠和脂质囊泡来说明这一原理,这些颗粒都无需外部干预即可捕获,而与它们的质量和介电功能无关。电子设备的刚度和稳定性可以通过调节系统的几何形状和溶液的离子强度轻松调节塔蒂阱,并使其与其他操作机制集成在一起。我们预期这些功能将使其可用于无接触限制单个蛋白质和大分子,以及纳米级物体的分类和分级,或将其组装成高密度阵列。

著录项

  • 来源
    《Nature》 |2010年第7316期|P.692-695ⅲ|共5页
  • 作者单位

    Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland;

    rnLaboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland;

    rnLaboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX13QZ, UK;

    rnLaboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号