首页> 外文期刊>Nature >Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets
【24h】

Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets

机译:定向单分子磁体单层中磁化的量子隧穿

获取原文
获取原文并翻译 | 示例
           

摘要

A fundamental step towards atomic- or molecular-scale spintronic devices has recently been made by demonstrating that the spin of an individual atom deposited on a surface, or of a small paramagnetic molecule embedded in a nanojunction, can be externally controlled. An appealing next step is the extension of such a capability to the field of information storage, by taking advantage of the magnetic bi-stability and rich quantum behaviour of single-molecule magnets (SMMs). Recently, a proof of concept that the magnetic memory effect is retained when SMMs are chemically anchored to a metallic surface was provided. However, control of the nanoscale organization of these complex systems is required for SMMs to be integrated into molecular spintronic devices. Here we show that a preferential orientation of Fe_4 complexes on a gold surface can be achieved by chemical tailoring. As a result, the most striking quantum feature of SMMs-their stepped hysteresis loop, which results from resonant quantum tunnelling of the magnetization-can be clearly detected using synchrotron-based spectroscopic techniques. With the aid of multiple theoretical approaches, we relate the angular dependence of the quantum tunnelling resonances to the adsorption geometry, and demonstrate that molecules predominantly lie with their easy axes close to the surface normal. Our findings prove that the quantum spin dynamics can be observed in SMMs chemically grafted to surfaces, and offer a tool to reveal the organization of matter at the nanoscale.
机译:最近已经证明,可以从外部控制沉积在表面上的单个原子的自旋或嵌入纳米结的小顺磁性分子的自旋,从而朝着原子或分子规模的自旋电子器件迈出了根本性的一步。有吸引力的下一步是通过利用单分子磁体(SMM)的磁双稳定性和丰富的量子行为,将这种功能扩展到信息存储领域。最近,提供了一种概念证明,即当SMM化学锚固到金属表面时,可以保留磁记忆效应。但是,要将SMM集成到分子自旋电子器件中,就需要控制这些复杂系统的纳米级组织。在这里,我们表明,通过化学剪裁可以实现Fe_4络合物在金表面上的优先取向。结果,可以使用基于同步加速器的光谱技术清楚地检测到SMM最显着的量子特征-它们的阶梯式磁滞回线,这是由磁化的共振量子隧穿引起的。借助多种理论方法,我们将量子隧穿共振的角度依赖性与吸附几何学联系起来,并证明了分子主要位于其易轴接近表面法线的位置。我们的发现证明,在化学接枝到表面的SMM中可以观察到量子自旋动力学,并提供了一种工具来揭示纳米级物质的组织。

著录项

  • 来源
    《Nature》 |2010年第7322期|p.417-421|共5页
  • 作者单位

    Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy ISTM-CNR, URT Firenze, University of Florence, 50019 Sesto Fiorentino, Italy;

    Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy;

    rnDepartment of Chemistry and INSTM Research Unit, University of Modena and Reggio Emilia, 41100 Modena, Italy;

    rnDepartment of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy;

    rnDepartment of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy;

    rnInstitut de Mineralogie et de Physique des Milieux Condenses, CNRS UMR7590, Universite Pierre et Marie Curie, 75252 Paris, France;

    rnInstitut de Mineralogie et de Physique des Milieux Condenses, CNRS UMR7590, Universite Pierre et Marie Curie, 75252 Paris, France;

    rnSynchrotron Soleil, Saint Aubin, 91192 Gif sur Yvette, France;

    rnSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland IPCMS - DMONS, 67034 Strasbourg, France;

    rnEuropean Synchrotron Radiation Facility, 38043 Grenoble, France;

    rnDepartment of Chemistry and INSTM Research Unit, University of Modena and Reggio Emilia, 41100 Modena, Italy;

    rnDepartment of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号