首页> 外文期刊>Nature >Design, function and structure of a monomeric C1C transporter
【24h】

Design, function and structure of a monomeric C1C transporter

机译:单体C1C转运蛋白的设计,功能和结构

获取原文
获取原文并翻译 | 示例
           

摘要

Channels and transporters of the ClC family cause the transmem-brane movement of inorganic anions in service of a variety of biological tasks. from the unusual-the generation of the kilowatt pulses with which electric fish stun their prey-to the quotidian-the acidification of endosomes. vacuoles and lysosomes. The homo-dimeric architecture of ClC proteins. initially inferred from single-molecule studies of an elasmobranch Cl~- channel and later confirmed by crystal structures of bacterial Cl~-/H~+ antiporters. is apparently universal. Moreover. the basic machinery that enables ion movement through these proteins-the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl~- and H~+ antiport in the transporters-are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However. this evidence is only inferential. and because examples are known in which quaternary rearrangements of extra-membrane ClC domains that contribute to dimerization modulate transport activity. we cannot declare as definitive a parallel-pathways' picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl~-/ H~+ exchanger. ClC-ecl from Escherichia coli. To design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not required for Cl~-/H~+ exchange in ClC transporters.%CLC家族的渠道和运输因子是同型二聚体,但供在渠道和离子耦合腔(它们在运输因子中协调CI和H~+的反向转运)中阴离子扩散的水孔却是完全包含在这些同型二聚体的每个亚单元内,说明这些复合物起“并行通道”的作用。这种观点在一项实验中得到证实:在该实验中,突变被用来使来自大肠杆菌的一个CIC Cl~-/H~+“交换器”的二聚体界面失去稳定性。这样得到的渠道是一个单聚体,然而它在功能上却几乎跟野生型渠道完全相同。这意味着,跨亚单位的相互作用并不是CLC运输因子中的 Cl~-/H~-交换所必需的,这便提出一个问题.野生型运输因子为什么是同型二聚体?
机译:ClC家族的通道和转运蛋白可为多种生物任务提供服务,从而引起无机阴离子的跨膜运动。从异常(电脉冲使猎物昏迷的千瓦脉冲的产生)到quotidian,即内体的酸化。空泡和溶酶体。 ClC蛋白的同二聚体结构。最初是通过对单分支弹珠Cl〜-通道的单分子研究推断出来的,后来被细菌Cl〜-/ H〜+反转运蛋白的晶体结构所证实。显然是普遍的。此外。使离子能够通过这些蛋白质运动的基本机制-阴离子中在通道中扩散的水孔和协调转运蛋白中Cl〜-和H〜+反向转运的离子耦合室完全包含在同型二聚体的每个亚基中。通过跨二聚体界面的共价交联而束缚着细菌的ClC转运蛋白的近乎正常的功能,以及连接人类同系物的行为表明,转运周期位于每个亚基内,并且不需要亚基之间的刚体重排。然而。这个证据只是推论。因为已知的例子中,有助于二聚化的膜外ClC结构域的四级重排调节转运活性。我们不能确定平行二聚体的图片,其中同源二聚体由两个独立运行的单亚基转运蛋白组成。对该观点的强烈预测是,原则上应该可以获得单体ClC。在这里,我们利用ClC Cl〜-/ H〜+交换子的已知结构。来自大肠杆菌的ClC-ecl。要设计使二聚体界面不稳定的突变体,同时保留单个亚基的结构和转运功能。结果表明,单独的ClC亚基是转运的基本功能单元,ClC转运蛋白中Cl〜-/ H〜+交换不需要跨亚基相互作用。%CLC家族的渠道和运输因子是同型二聚体,但供方在渠道和离子交换腔(它们在运输因子中协调CI和H〜+的反向转移)中扩散的水孔却是完全包含在这些同型二聚体的每个亚单元内,说明这些观点在另外一个实验中得到证实:在该实验中,突变被用来使来自抗生素的一个CIC Cl〜-/ H〜+“交换器”的二聚体界面丧失稳定性。这样得到的渠道是一个单聚体,然而它在功能上却几乎跟野生型渠道完全相同。这意味着,跨亚单位的相互作用并非CLC运输因子中的Cl 〜-/ H〜-交换所必需的,这便提出一个问题。野生型运输因子为什么是同型二聚体?

著录项

  • 来源
    《Nature》 |2010年第7325期|p.844-847v|共5页
  • 作者单位

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA;

    rnDepartment of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA;

    rnDepartment of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号