首页> 外文期刊>Nature >Squeeze Until It Hurts
【24h】

Squeeze Until It Hurts

机译:挤压直到受伤

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum systems are uncertain by nature. By 'squeezing' this uncertainty, physicists can make better measurements of quantities such as distance. But overdoing it makes things burst out all over the place. At the leading edge of experimental science, the latest measurement techniques are promising to provide breakthroughs in our understanding of the Universe. The ever-improving ability to sense small displacements, for example, is at the heart of projects such as the Laser Interferometer Gravitational Wave Observatory (LIGO), which seeks to observe the faint space-time ripples of distant supernovae. When technical noise is strongly suppressed, the ultimate limit to the precision of any measurement is set by the quantum uncertainty in the measuring system. But even this quantum uncertainty can be reduced - a technique known as 'squeezing'. On page 67 of this issue, Shalm et al. show that squeezing down this quantum uncertainty is not as simple as might be expected - too much squeezing actually worsens measurement precision. Fortunately, they also show that it is possible to recover the best precision allowed by the laws of physics by looking at the 'over-squeezed' system in a different way. That a fundamental limit to measurement precision exists at all is a purely quantum phenomenon. Consider light, the basis of a suite of sensitive interferometric measurement techniques. In the classical picture, light is a wave whose amplitude and phase - where the wave's peaks and troughs lie - can be specified with infinitesimal precision. But in reality, light has much more character. It is made up of indivisible photons that exhibit probabilistic behaviour when forced to decide which quantum state, out of a range of options presented, to be in.
机译:量子系统本质上是不确定的。通过“压缩”这种不确定性,物理学家可以更好地测量距离等量。但是过度使用会使事情到处爆发。在实验科学的前沿,最新的测量技术有望为我们对宇宙的理解提供突破。例如,不断提高的感知小位移的能力是诸如激光干涉仪引力波天文台(LIGO)等项目的核心,该项目旨在观察遥远的超新星的微弱时空波纹。当强烈抑制技术噪声时,任何测量精度的最终极限都由测量系统中的量子不确定性设定。但是,甚至这种量子不确定性也可以降低-一种称为“压缩”的技术。在第67页上,Shalm等人。表明缩小这种量子不确定性并不像预期的那么简单-过度压缩实际上会降低测量精度。幸运的是,他们还表明,通过以不同的方式观察“过度挤压”的系统,有可能恢复物理定律所允许的最佳精度。根本存在对测量精度的根本限制是纯粹的量子现象。考虑光,这是一套敏感的干涉测量技术的基础。在经典图中,光是一个波,其振幅和相位(该波的波谷和波谷所在)可以以最小的精度指定。但实际上,光具有更多特征。它由不可分的光子组成,这些光子在被迫选择出现的一系列选择中的一个时,会表现出概率性行为。

著录项

  • 来源
    《Nature》 |2009年第7225期|p.35-36|共2页
  • 作者

    Geoff J. Pryde;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号