首页> 外文期刊>Nature >Transparent Dense Sodium
【24h】

Transparent Dense Sodium

机译:透明致密钠

获取原文
获取原文并翻译 | 示例
           

摘要

Under pressure, metals exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behaviour. But at the densities that can now be achieved experimentally, compression can be so substantial that core electrons overlap. This effect dramatically alters electronic properties from those typically associated with simple free-electron metals such as lithium (Li; refs 1-3) and sodium (Na; refs 4, 5), leading in turn to structurally complex phases and superconductivity with a high critical temperature. But the most intriguing prediction-that the seemingly simple metals Li (ref. 1) and Na (ref. 4) will transform under pressure into insulating states, owing to pairing of alkali atoms-has yet to be experimentally confirmed. Here we report experimental observations of a pressure-induced transformation of Na into an optically transparent phase at ~200 GPa (corresponding to ~5.0-fold compression). Experimental and computational data identify the new phase as a wide bandgap dielectric with a six-coordinated, highly distorted double-hexagonal close-packed structure. We attribute the emergence of this dense insulating state not to atom pairing, but to p-d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices. We expect that such insulating states may also form in other elements and compounds when compression is sufficiently strong that atomic cores start to overlap strongly.
机译:在压力下,金属表现出越来越短的原子间距离。凭直觉,预期该反应将伴随着价带和导带宽度的增加,并因此伴随着更明显的类似自由电子的行为。但是在现在可以通过实验实现的密度下,压缩是如此之大,以至于核心电子重叠。这种效应极大地改变了通常与简单的自由电子金属(如锂(Li;参考文献1-3)和钠(Na;参考文献4、5))相关的电子性能,进而导致结构复杂的相和超导性。临界温度。但是,最引人入胜的预测-表面上看似简单的金属Li(参考文献1)和Na(参考文献4)由于碱原子的配对将在压力下转变成绝缘态,但尚待实验证实。在这里,我们报告了在200 GPa(对应于约5.0倍压缩)下压力诱导的Na转变为光学透明相的实验观察结果。实验和计算数据将新相识别为具有六配位,高度失真的双六边形紧密堆积结构的宽带隙电介质。我们将这种致密绝缘状态的出现归因于原子配对,而不是价电子的p-d杂化以及它们被核心电子排斥进入晶格间隙的原因。我们预计,当压缩足够强到原子核开始强烈重叠时,其他元素和化合物中也会形成这种绝缘态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号