首页> 外文期刊>Nature >Universal Transduction Scheme For Nanomechanical Systems Based On Dielectric Forces
【24h】

Universal Transduction Scheme For Nanomechanical Systems Based On Dielectric Forces

机译:基于介电力的纳米机械系统通用换能方案

获取原文
获取原文并翻译 | 示例
           

摘要

Any polarizable body placed in an inhomogeneous electric field experiences a dielectric force. This phenomenon is well known from the macroscopic world: a water jet is deflected when approached by a charged object. This fundamental mechanism is exploited in a variety of contexts-for example, trapping microscopic particles in an optical tweezer, where the trapping force is controlled via the intensity of a laser beam, or dielectrophoresis, where electric fields are used to manipulate particles in liquids. Here we extend the underlying concept to the rapidly evolving field of nanoelectromechanical systems (NEMS). A broad range of possible applications are anticipated for these systems, but drive and detection schemes for nanomechanical motion still need to be optimized. Our approach is based on the application of dielectric gradient forces for the controlled and local transduction of NEMS. Using a set of on-chip electrodes to create an electric field gradient, we polarize a dielectric resonator and subject it to an attractive force that can be modulated at high frequencies. This universal actuation scheme is efficient, broadband and scalable. It also separates the driving scheme from the driven mechanical element, allowing for arbitrary polarizable materials and thus potentially ultralow dissipation NEMS. In addition, it enables simple voltage tuning of the mechanical resonance over a wide frequency range, because the dielectric force depends strongly on the resonator-electrode separation. We use the modulation of the resonance frequency to demonstrate parametric actuation. Moreover, we reverse the actuation principle to realize dielectric detection, thus allowing universal transduction of NEMS. We expect this combination to be useful both in the study of fundamental principles and in applications such as signal processing and sensing.
机译:置于不均匀电场中的任何可极化物体都会受到介电作用。这种现象在宏观世界中是众所周知的:当带电物体接近时,水流会发生偏转。在多种情况下都可以利用这种基本机理,例如,将微细颗粒捕获在光学镊子中,其中通过激光束的强度控制捕获力,或者通过介电泳,其中使用电场来操纵液体中的颗粒。在这里,我们将基本概念扩展到纳米机电系统(NEMS)迅速发展的领域。这些系统预计将有广泛的可能应用,但纳米机械运动的驱动和检测方案仍需要优化。我们的方法是基于介电梯度力在NEMS的受控和局部转导中的应用。使用一组片上电极创建电场梯度,我们使介电共振器极化并使它受到可以在高频下调制的吸引力。这种通用驱动方案高效,宽带且可扩展。它还将驱动方案与从动机械元件分开,从而允许使用任何可极化的材料,因此可能具有超低耗散的NEMS。此外,由于介电力强烈取决于谐振器与电极之间的间距,因此可以在很宽的频率范围内对机械谐振进行简单的电压调整。我们使用谐振频率的调制来演示参数驱动。此外,我们颠倒了驱动原理以实现介电检测,从而实现了NEMS的通用转换。我们希望这种结合对基本原理的研究以及信号处理和传感等应用都是有用的。

著录项

  • 来源
    《Nature》 |2009年第7241期|p.1001-1004|共4页
  • 作者单位

    Fakultaet fuer Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitaet, Geschwister-Scholl-Platz 1, 80539 Muenchen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号