首页> 外文期刊>Nature >Direct observation of a widely tunable bandgap in bilayer graphene
【24h】

Direct observation of a widely tunable bandgap in bilayer graphene

机译:直接观察双层石墨烯中可广泛调节的带隙

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p-n junctions, transistors, photodiodes and lasers. A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET) and infrared microspectroscopy, we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping and provides direct evidence of a widely tunable bandgap-spanning a spectral range from zero to mid-infrared-that has eluded previous attempts2'9. Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.
机译:电子带隙是半导体和绝缘体的固有特性,在很大程度上决定了它们的传输和光学特性。因此,它在现代设备物理学和技术中起着核心作用,并控制半导体设备(例如p-n结,晶体管,光电二极管和激光器)的操作。可调带隙是非常需要的,因为它将在设计和优化此类设备时提供极大的灵活性,特别是如果可以通过施加可变的外部电场对其进行调整的话。然而,在常规材料中,带隙通过它们的晶体结构固定,从而阻止了这种带隙控制。在这里,我们展示了在电控双层石墨烯中可广泛调节的电子带隙的实现。使用双栅极双层石墨烯场效应晶体管(FET)和红外显微技术,我们展示了高达250 meV的栅极控制的,连续可调的带隙。我们的技术避免了不受控制的化学掺杂,并提供了从零到中红外的光谱范围可广泛调节的带隙的直接证据,这是先前尝试的2'9。结合此类系统卓越的电传输性能,这种静电带隙控制技术提出了基于石墨烯的新型纳米电子和纳米光子器件应用。

著录项

  • 来源
    《Nature》 |2009年第7248期|820-823|共4页
  • 作者单位

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA;

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA Department of Photonics and Institute of Electro-optical Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010;

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA;

    Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号