首页> 外文期刊>Nature >Laser cooling by collisional redistribution of radiation
【24h】

Laser cooling by collisional redistribution of radiation

机译:通过辐射的碰撞重新分布进行激光冷却

获取原文
获取原文并翻译 | 示例
           

摘要

The general idea that optical radiation may cool matter was put forward 80 years ago. Doppler cooling of dilute atomic gases is an extremely successful application of this concept. More recently, anti-Stokes cooling in multilevel systems has been explored, culminating in the optical refrigeration of solids. Collisional redistribution of radiation has been proposed as a different cooling mechanism for atomic two-level systems, although experimental investigations using moderate-density gases have not reached the cooling regime. Here we experimentally demonstrate laser cooling of an atomic gas based on collisional redistribution of radiation, using rubidium atoms in argon buffer gas at a pressure of 230 bar. The frequent collisions in the ultradense gas transiently shift a highly red-detuned laser beam (that is, one detuned to a much lower frequency) into resonance, whereas spontaneous decay occurs close to the unperturbed atomic resonance frequency. During each excitation cycle, kinetic energy of order k_B T-that is, the thermal energy (k_B, Boltzmann's constant; T, temperature)-is extracted from the dense atomic sample. In a proof-of-principle experiment with a thermally non-isolated sample, we demonstrate relative cooling by 66 K. The cooled gas has a density more than ten orders of magnitude greater than the typical values used in Doppler-cooling experiments, and the cooling power reaches 87 mW. Future applications of the technique may include supercooling beyond the homogeneous nucleation temperature and optical chillers.
机译:光辐射可以冷却物质的一般想法是80年前提出的。多普勒稀原子气体冷却是该概念的极其成功的应用。最近,已经研究了多级系统中的反斯托克斯冷却,最终达到了固体的光学制冷。虽然使用中等密度气体的实验研究尚未达到冷却状态,但已提出将辐射的碰撞重分布作为原子两级系统的另一种冷却机制。在这里,我们通过实验证明,在230 bar压力下,在氩气缓冲气体中使用rub原子,可以基于辐射的碰撞重新分布对原子气体进行激光冷却。超高密度气体中的频繁碰撞使一束高度红色失谐的激光束(即一个失谐至非常低的频率)暂时转变为共振,而自发衰变则发生在不受干扰的原子共振频率附近。在每个激发周期中,从密集的原子样本中提取出k_B T阶的动能,即热能(k_B,玻耳兹曼常数; T,温度)。在非热隔离样品的原理验证实验中,我们证明了66 K的相对冷却。冷却后的气体的密度比多普勒冷却实验中使用的典型值大十个数量级。制冷功率达到87 mW。该技术的未来应用可能包括超过均相成核温度的过冷和光学冷却器。

著录项

  • 来源
    《Nature》 |2009年第7260期|70-73|共4页
  • 作者

    Ulrich Vogl; Martin Weitz;

  • 作者单位

    Institut fuer Angewandte Physik der Universitaet Bonn, Wegeierstrasse 8, 53115 Bonn, Germany;

    Institut fuer Angewandte Physik der Universitaet Bonn, Wegeierstrasse 8, 53115 Bonn, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号