首页> 外文期刊>Nature >Designing metallic glass matrix composites with high toughness and tensile ductility
【24h】

Designing metallic glass matrix composites with high toughness and tensile ductility

机译:设计具有高韧性和拉伸延展性的金属玻璃基复合材料

获取原文
获取原文并翻译 | 示例
           

摘要

The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of ~1 GPa, tensile ductility of ~2-3 per cent, and an enhanced mode I fracture toughness of K_(IC) ≈ 40MPam~(1/2) were reported8'9. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K_(IC) up to ~170 MPa m~(1/2), and fracture energies for crack propagation as high as G_(IC) ≈ 340 kJ m~(-2). The K_(IC) and G_(IC) values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.
机译:现代高性能结构工程材料的选择和设计是通过优化机械性能(例如强度,延展性,韧性,弹性以及对可预测的和优美的(非灾难性)服务失效的要求)的组合来驱动的。高度可加工的块状金属玻璃(BMG)是一类新的工程材料,并引起了巨大的技术兴趣。尽管许多BMG表现出高强度并显示出相当大的断裂韧性,但它们缺乏延展性,并且在不受约束的载荷几何形状下以明显的脆性破坏。例如,某些BMG在压缩或弯曲测试中表现出显着的塑性变形,但在单轴张力中都表现出可忽略的塑性(<0.5%应变)。为了克服拉伸中的脆性破坏,已经引入了BMG-基质复合材料。在BMG基质中具有孤立的树枝状晶体的不均匀微观结构使玻璃稳定,可以抵抗与剪切带无限延伸相关的灾难性破坏,并提高了整体可塑性和更平稳的破坏。据报道8'9的拉伸强度约为1 GPa,拉伸延展性约为2-3%,I型断裂韧度增强,K_(IC)≈40MPam〜(1/2)。在此方法的基础上,我们通过匹配基本的机械和微观结构长度标尺来开发“设计的复合材料”。在这里,我们报道了钛锆基BMG复合材料,其室温拉伸延展性超过10%,屈服强度为1.2-1.5 GPa,K_(IC)高达〜170 MPa m〜(1/2),断裂能为裂纹扩展高达G_(IC)≈340 kJ m〜(-2)。 K_(IC)和G_(IC)值等于或超过在最坚韧的钛或钢合金中可获得的值,从而使BMG复合材料成为已知最坚韧的材料之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号