首页> 外文期刊>Nature >Transformation of spin information into large electrical signals using carbon nanotubes
【24h】

Transformation of spin information into large electrical signals using carbon nanotubes

机译:使用碳纳米管将自旋信息转换为大电信号

获取原文
获取原文并翻译 | 示例
           

摘要

Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La_(0.7)Sr_(0.3)MnO_3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the inter-facial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.
机译:自旋电子学(spintronics)利用电子的磁性,这种原理在商业上应用在例如磁盘驱动读头的自旋阀中。当前,基于工业相关的半导体开发新型自旋电子器件引起了广泛的兴趣,其中自旋极化电流流过自旋极化源极和漏极之间的横向通道。然而,自旋弛豫限制了自旋信息到大电信号的转换,因此磁阻信号低于1%(参考文献2)。在非磁性通道是跨壁碳纳米管的多壁碳纳米管跨越1.5μm间隙的器件中,我们报告了较大的磁阻效应(在5 K时为61%),对应于大输出信号(65 mV)自旋极化锰矿La_(0.7)Sr_(0.3)MnO_3。该自旋电子系统结合了许多有利的性能,可实现这一性能。由于碳的自旋轨道耦合小,纳米管的自旋寿命长;纳米管中的高费米速度限制了载流子的停留时间;锰电极中的自旋极化很高,一直到锰铁-纳米管界面一直保持高极化状态。以及自旋注入的界面屏障的阻力。我们支持使用密度泛函理论计算得出的有关界面的这些结论。我们使用这种化学和几何形状不同的材料进行的实验的成功应会为将来的自旋电子学应用启发材料选择的新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号