首页> 外文期刊>Nature >Annealing-induced interfacial toughening using a molecular nanolayer
【24h】

Annealing-induced interfacial toughening using a molecular nanolayer

机译:使用分子纳米层进行退火诱导的界面增韧

获取原文
获取原文并翻译 | 示例
           

摘要

Self-assembled molecular nanolayers (MNLs) composed of short organic chains and terminated with desired functional groups are attractive for modifying surface properties for a variety of applications. For example, organosilane MNLs are used as lubricants, in nanolithography, for corrosion protection and in the crystallization of biominerals. Recent work has explored uses of MNLs at thin-film interfaces, both as active components in molecular devices, and as passive layers, inhibiting interfacial diffusion, promoting adhesion and toughening brittle nanoporous structures. The relatively low stability of MNLs on surfaces at temperatures above 350-400℃ (refs 12,13), as a result of desorption or degradation, limits the use of surface MNLs in high-temperature applications. Here we harness MNLs at thin-film interfaces at temperatures higher than the MNL desorption temperature to fortify copper-dielectric interfaces relevant to wiring in micro-and nano-electronic devices. Annealing Cu/MNL/SiO_2 structures at 400-700℃ results in interfaces that are five times tougher than pristine Cu/SiO_2 structures, yielding values exceeding ~ 20 J m~(-2). Previously, similarly high toughness values have only been obtained using micrometre-thick interfacial layers. Electron spectroscopy of fracture surfaces and density functional theory modelling of molecular stretching and fracture show that toughening arises from thermally activated interfacial siloxane bridging that enables the MNL to be strongly linked to both the adjacent layers at the interface, and suppresses MNL desorption. We anticipate that our findings will open up opportunities for molecular-level tailoring of a variety of interfacial properties, at processing temperatures higher than previously envisaged, for applications where microlayers are not a viable option-such as in nanodevices or in thermally resistant molecular-inorganic hybrid devices.
机译:由短有机链组成并以所需官能团封端的自组装分子纳米层(MNL)对于修饰各种应用的表面性质具有吸引力。例如,有机硅烷MNL在纳米平版印刷术中用作润滑剂,用于腐蚀防护和生物矿物的结晶。最近的工作已经探索了MNL在薄膜界面上的用途,既可以用作分子装置中的活性成分,又可以用作无源层,从而抑制界面扩散,促进粘附并增强脆性纳米多孔结构。由于解吸或降解,在高于350-400℃的温度下,表面MNL的相对较低的稳定性(参考文献12,13)限制了表面MNL在高温应用中的使用。在这里,我们在高于MNL解吸温度的温度下在薄膜界面处利用MNL,以强化与微电子和纳米电子设备中的布线有关的铜电介质界面。 Cu / MNL / SiO_2结构在400-700℃退火时,其界面韧性是原始Cu / SiO_2结构的五倍,其屈服值超过〜20 J m〜(-2)。以前,仅使用微米厚的界面层才能获得类似的高韧性值。断裂表面的电子光谱和分子拉伸和断裂的密度泛函理论模型表明,增韧是由热活化的界面硅氧烷桥连产生的,该桥连使MNL牢固地连接到界面上的两个相邻层,并抑制了MNL的解吸。我们预计,我们的发现将为在比先前设想的更高的加工温度下为各种界面特性进行分子级定制提供机会,适用于微层不可行的应用(例如在纳米器件或耐热分子无机材料中)混合设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号