首页> 外文期刊>Nature >Doping semiconductor nanocrystals
【24h】

Doping semiconductor nanocrystals

机译:掺杂半导体纳米晶体

获取原文
获取原文并翻译 | 示例
           

摘要

Doping-the intentional introduction of impurities into a material-is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals(1-4). Despite some successes(5-11), many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)-despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials(13-15), are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption-and therefore doping efficiency-is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals-for applications from solar cells(16) to spintronics(17)-can be anticipated.
机译:掺杂-将杂质故意引入材料中-是控制体半导体特性的基础。这激发了类似的努力来掺杂半导体纳米晶体(1-4)。尽管取得了一些成功(5-11),但由于不清楚的原因,许多努力都失败了。例如,尽管可以将锰掺入CdS和ZnSe的纳米晶体中(参考文献7-9),但不能将其掺入CdSe(参考文献12)中,尽管整体溶解度接近50%。这些困难阻碍了新的纳米晶体材料的发展(13-15),通常归因于“自纯化”,这是一种所谓的固有机制,可将杂质排出。在这里,我们相反地显示,控制掺杂的潜在机制是生长过程中纳米晶体表面上杂质的初始吸附。我们发现吸附-以及因此的掺杂效率-由三​​个主要因素决定:表面形态,纳米晶体形状和生长溶液中的表面活性剂。几种纳米晶体的Mn吸附能和平衡形状的计算得出特定的掺杂预测。通过测量ZnSe中Mn的浓度如何随纳米晶体的尺寸和形状变化而证实了这些。最后,我们使用我们的预测将Mn掺入以前不可掺杂的CdSe纳米晶体中。这一成功表明,早期的掺杂困难并不是固有的,并表明可以预料到各种掺杂的纳米晶体,从太阳能电池(16)到自旋电子学(17)的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号