首页> 外文期刊>Nature >The interface between silicon and a high-k oxide
【24h】

The interface between silicon and a high-k oxide

机译:硅与高k氧化物之间的界面

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of the semiconductor industry to continue scaling microelectronic devices to ever smaller dimensions (a trend known as Moore's Law) is limited by quantum mechanical effects: as the thickness of conventional silicon dioxide (SiO_2) gate insulators is reduced to just a few atomic layers, electrons can tunnel directly through the films. Continued device scaling will therefore probably require the replacement of the insulator with high-dielectric-constant (high-k) oxides, to increase its thickness, thus preventing tunnelling currents while retaining the electronic properties of an ultrathin SiO_2 film. Ultimately, such insulators will require an atomically defined interface with silicon without an interfacial SiO_2 layer for optimal performance. Following the first reports of epitaxial growth of AO and ABO_3 compounds on silicon, the formation of an atomically abrupt crystalline interface between strontium titanate and silicon was demonstrated. However, the atomic structure proposed for this interface is questionable because it requires silicon atoms that have coordinations rarely found elsewhere in nature. Here we describe first-principles calculations of the formation of the interface between silicon and strontium titanate and its atomic structure. Our study shows that atomic control of the inter-facial structure by altering the chemical environment can dramatically improve the electronic properties of the interface to meet technological requirements. The interface structure and its chemistry may provide guidance for the selection process of other high-k gate oxides and for controlling their growth.
机译:半导体工业将微电子器件继续按比例缩小到越来越小的尺寸的能力(一种称为摩尔定律的趋势)受到量子力学效应的限制:由于传统的二氧化硅(SiO_2)栅极绝缘体的厚度减小到只有几个原子层电子可以直接隧穿薄膜。因此,继续进行器件缩放可能需要用高介电常数(高k)氧化物代替绝缘体,以增加其厚度,从而防止隧穿电流,同时保持超薄SiO_2膜的电子性能。最终,这样的绝缘体将需要与硅原子定义的界面,而没有界面SiO_2层才能获得最佳性能。在首次报道了在硅上外延生长AO和ABO_3化合物后,证明了钛酸锶和硅之间原子原子上突然的结晶界面的形成。但是,为此接口提出的原子结构是有问题的,因为它需要硅原子具有在自然界其他地方很少发现的配位。在这里,我们描述了硅与钛酸锶之间界面的形成及其原子结构的第一性原理计算。我们的研究表明,通过改变化学环境对界面结构进行原子控制可以极大地改善界面的电子性能,从而满足技术要求。界面结构及其化学性质可为其他高k栅极氧化物的选择过程以及控制其生长提供指导。

著录项

  • 来源
    《Nature》 |2004年第6969期|p.53-56|共4页
  • 作者单位

    Clausthal University of Technology, Institute for Theoretical Physics, Leibnitzstrasse 10, D-38678 Clausthal-Zellerfeld, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号