首页> 外文期刊>Nature >Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy
【24h】

Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy

机译:用电子显微镜测量位错至0.03埃的位移场

获取原文
获取原文并翻译 | 示例
           

摘要

Defects and their associated long-range strain fields are of considerable importance in many areas of materials science(1,2). For example, a major challenge facing the semiconductor industry is to understand the influence of defects on device operation, a task made difficult by the fact that their interactions with charge carriers can occur far from defect cores, where the influence of the defect is subtle and difficult to quantify(3,4). The accurate measurement of strain around defects would therefore allow more detailed understanding of how strain fields affect small structures - in particular their electronic, mechanical and chemical properties and how such fields are modified when confined to nanometre-sized volumes. Here we report the measurement of displacements around an edge dislocation in silicon using a combination of high-resolution electron microscopy and image analysis inherited from optical interferometry. The agreement of our observations with anisotropic elastic theory calculations is better than 0.03 Angstrom. Indeed, the results can be considered as an experimental verification of anisotropic theory at the near-atomic scale. With the development of nanostructured materials and devices, we expect the use of electron microscopy as a metrological tool for strain analysis to become of increasing importance. [References: 18]
机译:在许多材料科学领域中,缺陷及其相关的远距离应变场具有相当重要的意义(1,2)。例如,半导体行业面临的主要挑战是了解缺陷对器件操作的影响,因为与电荷载流子的相互作用可能发生在远离缺陷核的地方,因此这一任务变得困难,因为缺陷核的影响微乎其微。难以量化(3,4)。因此,围绕缺陷的应变的准确测量将使人们能够更详细地了解应变场如何影响小型结构,尤其是其电子,机械和化学性质,以及当局限于纳米级体积时如何修改此类场。在这里,我们报告了结合使用高分辨电子显微镜和继承自光学干涉法的图像分析技术对硅边缘位错周围的位移进行测量的方法。我们的观测结果与各向异性弹性理论计算的吻合度优于0.03埃。实际上,该结果可以被认为是各向异性理论在近原子尺度上的实验验证。随着纳米结构材料和设备的发展,我们希望将电子显微镜作为应变分析的计量工具变得越来越重要。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号