首页> 外文期刊>Nature >Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres
【24h】

Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres

机译:具有约1.5微米的完整三维带隙的硅光子晶体的大规模合成

获取原文
获取原文并翻译 | 示例
           

摘要

Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 μm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small 'necks' formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics.
机译:使用光代替电子作为信息载体的光子技术正逐渐取代通信和信息管理系统中的电子设备。为此,可通过光子带隙材料(一种特殊的光子晶体)实现微观光操纵,其中三维周期性周期性介电常数变化可控地阻止电磁波在整个指定频段传播。这可以导致光子的定位,从而提供了一种控制和抑制可用于光子器件制造的自发光发射的机制。实际上,精心设计的线缺陷可能会充当连接全光学微芯片中光子器件的波导,并且光子材料浸入合适的液晶可能会产生可通过外部施加的电压完全调节的光子带隙结构(并因此产生光流模式) 。但是,这项技术的实现需要一种策略来有效合成高质量,大规模的光子晶体,该晶体具有在微米和亚微米波长处的光子带隙,并具有为光学电路合理设计的线和点缺陷。在这里,我们描述了以1.46μm为中心的具有完整的三维光子带隙的硅反蛋白石的单晶,该晶体是通过在紧密堆积的二氧化硅球蛋白石模板的空隙内生长硅而产生的,该空隙通过烧结过程中形成的小“颈”连接,然后移除二氧化硅模板。该合成方法简单且便宜,产生易于与现有的基于硅的微电子集成的纯硅光子晶体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号