首页> 外文期刊>Nature >Subcycle observation of lightwave-driven Dirac currents in a topological surface band
【24h】

Subcycle observation of lightwave-driven Dirac currents in a topological surface band

机译:拓扑表面带中光波驱动狄拉克电流的子周期观察

获取原文
获取原文并翻译 | 示例
           

摘要

Harnessing the carrier wave of light as an alternating-current bias may enable electronics at optical clock rates(1). Lightwave-driven currents have been assumed to be essential for high-harmonic generation in solids(2-6), charge transport in nanostructures(7-8), attosecond-streaking experiments(9-16) and atomic-resolution ultrafast microscopy(17-18). However, in conventional semiconductors and dielectrics, the finite effective mass and ultrafast scattering of electrons limit their ballistic excursion and velocity. The Dirac-like, quasi-relativistic band structure of topological insulators(19-29) may allow these constraints to be lifted and may thus open a new era of lightwave electronics. To understand the associated, complex motion of electrons, comprehensive experimental access to carrier-wave-driven currents is crucial. Here we report angle-resolved photoemission spectroscopy with subcycle time resolution that enables us to observe directly how the carrier wave of a terahertz light pulse accelerates Dirac fermions in the band structure of the topological surface state of Bi2Te3. While terahertz streaking of photoemitted electrons traces the electromagnetic field at the surface, the acceleration of Dirac states leads to a strong redistribution of electrons in momentum space. The inertia-free surface currents are protected by spin-momentum locking and reach peak densities as large as two amps per centimetre, with ballistic mean free paths of several hundreds of nanometres, opening up a realistic parameter space for all-coherent lightwave-driven electronic devices. Furthermore, our subcycle-resolution analysis of the band structure may greatly improve our understanding of electron dynamics and strong-field interaction in solids.
机译:利用光载波作为交流偏置可以使电子设备达到光学时钟频率(1)。假设光波驱动的电流对于固体高谐波产生(2-6),纳米结构中的电荷传输(7-8),阿秒条纹实验(9-16)和原子分辨率超快显微镜(17)是必不可少的-18)。然而,在常规半导体和电介质中,有限的有效质量和电子的超快散射限制了它们的弹道偏移和速度。拓扑绝缘子的类狄拉克准相对论带结构(19-29)可以解除这些限制,从而开辟光波电子学的新纪元。为了了解电子的相关复杂运动,对载波驱动电流进行全面的实验性访问至关重要。在这里,我们报告具有亚周期时间分辨率的角度分辨光发射光谱,该光谱使我们能够直接观察太赫兹光脉冲的载波如何在Bi2Te3拓扑表面态的能带结构中加速狄拉克费米子。当光发射电子的太赫兹条纹跟踪表面的电磁场时,狄拉克态的加速导致电子在动量空间中强烈地重新分布。无惯性表面电流受到自旋动量锁定的保护,并达到高达每厘米2安培的峰值密度,具有数百纳米的弹道平均自由程,为全相干光波驱动电子技术提供了一个现实的参数空间设备。此外,我们对能带结构的子周期分辨率分析可能会大大提高我们对固体中电子动力学和强场相互作用的理解。

著录项

  • 来源
    《Nature》 |2018年第7727期|396-400|共5页
  • 作者单位

    Philipps Univ Marburg, Dept Phys, Marburg, Germany;

    Univ Regensburg, Dept Phys, Regensburg, Germany;

    Univ Regensburg, Dept Phys, Regensburg, Germany;

    Univ Regensburg, Dept Phys, Regensburg, Germany;

    Univ Regensburg, Dept Phys, Regensburg, Germany;

    Russian Acad Sci, VS Sobolev Inst Geol & Mineral, Siberian Branch, Novosibirsk, Russia;

    Novosibirsk State Univ, Novosibirsk, Russia;

    Hiroshima Univ, Grad Sch Sci, Hiroshima, Japan;

    Univ Regensburg, Dept Phys, Regensburg, Germany;

    Philipps Univ Marburg, Dept Phys, Marburg, Germany;

    Philipps Univ Marburg, Dept Phys, Marburg, Germany;

    Univ Regensburg, Dept Phys, Regensburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号