首页> 外文期刊>Nature >A topological source of quantum light
【24h】

A topological source of quantum light

机译:量子光的拓扑源

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum light is characterized by distinctive statistical distributions that are possible only because of quantum mechanical effects. For example, single photons and correlated photon pairs exhibit photon number distributions with variance lower than classically allowed limits. This enables high-fidelity transmission of quantum information and sensing with lower noise than possible with classical light sources(1,2). Most quantum light sources rely on spontaneous parametric processes such as down-conversion and four-wave mixing(2). These processes are mediated by vacuum fluctuations of the electromagnetic field. Therefore, by manipulating the electromagnetic mode structure, for example with dispersion-engineered nanophotonic systems, the spectrum of generated photons can be controlled(3-7). However, disorder, which is ubiquitous in nanophotonic fabrication, causes device-to-device spectral variations(8-11). Here we realize topologically robust electromagnetic modes and use their vacuum fluctuations to create a quantum light source in which the spectrum of generated photons is much less affected by fabrication-induced disorder. Specifically, we use the topological edge states realized in a two-dimensional array of ring resonators to generate correlated photon pairs by spontaneous four-wave mixing and show that they outperform their topologically trivial one-dimensional counterparts in terms of spectral robustness. We demonstrate the non-classical nature of the generated light and the realization of a robust source of heralded single photons by measuring the conditional antibunching of photons, that is, the reduced likelihood of photons arriving together compared to thermal or laser light. Such topological effects, which are unique to bosonic systems, could pave the way for the development of robust quantum photonic devices.
机译:量子光的特征在于独特的统计分布,这仅是由于量子力学效应才可能实现的。例如,单个光子和相关光子对显示的光子数分布的方差低于经典允许的限制。与传统光源相比,这可以实现高保真度的量子信息传输和低噪声感测(1,2)。大多数量子光源依赖于自发的参数过程,例如下变频和四波混频(2)。这些过程是由电磁场的真空波动引起的。因此,通过操纵电磁模式结构,例如使用分散工程化的纳米光子系统,可以控制产生的光子的光谱(3-7)。然而,在纳米光子制造中普遍存在的无序会导致器件之间的光谱变化(8-11)。在这里,我们实现了拓扑稳健的电磁模式,并利用它们的真空波动来创建量子光源,其中所产生的光子的光谱受制造引起的无序影响的程度小得多。具体而言,我们使用在环形谐振器的二维阵列中实现的拓扑边缘状态,通过自发四波混合生成相关的光子对,并显示出它们在光谱鲁棒性方面优于其拓扑上琐碎的一维对应物。我们通过测量条件光子的反聚束,即与热或激光相比降低了光子到达的可能性,来证明所产生的光的非经典性质以及预示单个光子的可靠来源的实现。这种拓扑效应是玻色子系统所独有的,可以为鲁棒量子光子器件的开发铺平道路。

著录项

  • 来源
    《Nature》 |2018年第7724期|502-506|共5页
  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号