首页> 外文期刊>Nature >Rubisco condensate formation by CcmM in β-carboxysome biogenesis
【24h】

Rubisco condensate formation by CcmM in β-carboxysome biogenesis

机译:CcmM在β-羧化酶生物发生中形成Rubisco缩合物

获取原文
获取原文并翻译 | 示例
           

摘要

Cells use compartmentalization of enzymes as a strategy to regulate metabolic pathways and increase their efficiency(1). The alpha- and beta-carboxysomes of cyanobacteria contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-a complex of eight large (RbcL) and eight small (RbcS) subunits-and carbonic anhydrase(2-4). As HCO3- can diffuse through the proteinaceous carboxysome shell but CO2 cannot(5), carbonic anhydrase generates high concentrations of CO2 for carbon fixation by Rubisco(6). The shell also prevents access to reducing agents, generating an oxidizing environment(7-9). The formation of beta-carboxysomes involves the aggregation of Rubisco by the protein CcmM(10), which exists in two forms: full-length CcmM (M58 in Synechococcus elongatus PCC7942), which contains a carbonic anhydrase-like domain(8) followed by three Rubisco small subunit-like (SSUL) modules connected by flexible linkers; and M35, which lacks the carbonic anhydrase-like domain(11). It has long been speculated that the SSUL modules interact with Rubisco by replacing RbcS(2-4). Here we have reconstituted the Rubisco-CcmM complex and solved its structure. Contrary to expectation, the SSUL modules do not replace RbcS, but bind close to the equatorial region of Rubisco between RbcL dimers, linking Rubisco molecules and inducing phase separation into a liquid-like matrix. Disulfide bond formation in SSUL increases the network flexibility and is required for carboxysome function in vivo. Notably, the formation of the liquid-like condensate of Rubisco is mediated by dynamic interactions with the SSUL domains, rather than by low-complexity sequences, which typically mediate liquid-liquid phase separation in eukaryotes(12,13). Indeed, within the pyrenoids of eukaryotic algae, the functional homologues of carboxysomes, Rubisco adopts a liquid-like state by interacting with the intrinsically disordered protein EPYC1(14). Understanding carboxysome biogenesis will be important for efforts to engineer CO2-concentrating mechanisms in plants(15-19).
机译:细胞利用酶的区室化作为调节代谢途径和提高其效率的策略(1)。蓝细菌的α-和β-羧基体含有1,5-双磷酸核糖羧化酶/加氧酶(Rubisco)-由八个大(RbcL)和八个小的(RbcS)亚基组成的复合物-和碳酸酐酶(2-4)。由于HCO3-可以通过蛋白质的羧基体壳扩散,但CO2不能扩散(5),因此碳酸酐酶会产生高浓度的CO2以通过Rubisco固碳(6)。壳还防止接触还原剂,从而产生氧化环境(7-9)。 β-羧基体的形成涉及Rubisco通过CcmM(10)蛋白的聚集,它以两种形式存在:全长CcmM(细长的Synechococcus elongatus PCC7942中的M58),其包含碳酸酐酶样结构域(8),然后是通过柔性连接器连接的三个Rubisco小类亚基(SSUL)模块; M35,缺少碳酸酐酶样结构域(11)。长期以来一直推测SSUL模块通过替换RbcS(2-4)与Rubisco进行交互。在这里,我们重构了Rubisco-CcmM复合物并解决了其结构。与预期相反,SSUL模块不替代RbcS,而是在RbcL二聚体之间靠近Rubisco的赤道区域结合,将Rubisco分子连接起来并诱导相分离成液体状基质。 SSUL中二硫键的形成增加了网络的灵活性,是体内羧基化体功能所必需的。值得注意的是,Rubisco液体状冷凝物的形成是通过与SSUL结构域的动态相互作用来介导的,而不是通过低复杂性序列来介导的,低复杂性序列通常介导真核生物中的液相分离(12,13)。实际上,在真核藻类的类胡萝卜素内,即羧基体的功能同源物,Rubisco通过与内在无序的蛋白质EPYC1相互作用而呈液体状(14)。了解羧基化酶的生物发生对于工程化植物中CO2浓缩机制的工作至关重要(15-19)。

著录项

  • 来源
    《Nature》 |2019年第7742期|131-135|共5页
  • 作者单位

    Australian Natl Univ, Res Sch Biol, Australian Res Council Ctr Excellence Translat Ph, Canberra, ACT, Australia;

    KWS SAAT SE, Einbeck, Germany;

    Max Planck Inst Biochem, Dept Cellular Biochem, Martinsried, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号