首页> 外文期刊>Nature >An ultrafast symmetry switch in a Weyl semimetal
【24h】

An ultrafast symmetry switch in a Weyl semimetal

机译:Weyl半金属中的超快速对称开关

获取原文
获取原文并翻译 | 示例
           

摘要

Topological quantum materials exhibit fascinating properties(1-3), with important applications for dissipationless electronics and fault-tolerant quantum computers(4,5). Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors(6). Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend(7-9). However, conventional means of applying strain through heteroepitaxial lattice mismatch(10) and dislocations(11) are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.
机译:拓扑量子材料表现出令人着迷的特性(1-3),在无耗散电子学和容错量子计算机中具有重要的应用(4,5)。在这些材料中操作拓扑不变式将允许开发类似于晶体管开关的拓扑开关应用(6)。晶格应变提供了调节这些拓扑不变性的最自然的方法,因为它直接修改了电子-离子相互作用,并潜在地改变了拓扑特性所依赖的潜在晶体对称性(7-9)。但是,通过异质外延晶格失配(10)和位错(11)施加应变的常规方法无法扩展到晶体管所需的可控时变协议。集成到功能设备中需要具备超越材料的强大,受拓扑保护的特性并能够高速操纵拓扑的能力。在这里,我们使用相对论电子衍射进行晶体学测量,以证明太赫兹光脉冲可用于诱导Weyl半金属WTe2中具有大应变幅度的太赫兹频率层间剪切应变,从而导致拓扑上明显的亚稳相。单独的非线性光学测量结果表明,这种转变与向中心对称的拓扑无关紧要的对称性变化有关。我们进一步表明,这种剪切应变提供了一种超快速,高能效的方法,可以诱导鲁棒的,良好分离的Weyl点或消除所有手性相反的Weyl点。这项工作证明了对固体的拓扑特性进行超快控制以及开发以太赫兹频率工作的拓扑开关的可能性。

著录项

  • 来源
    《Nature》 |2019年第7737期|61-66|共6页
  • 作者单位

    Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA|SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA;

    Stanford Univ, Dept Chem, Stanford, CA 94305 USA;

    SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA;

    SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA|SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA|MIT, Dept Chem, Cambridge, MA 02139 USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA|Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA;

    Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA|SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA;

    SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA|SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA USA|Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA;

    SLAC Natl Accelerator Lab, Menlo Pk, CA USA;

    SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA|SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA USA|Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号