首页> 外文期刊>Nature >Controlling protein assembly on inorganic crystals through designed protein interfaces
【24h】

Controlling protein assembly on inorganic crystals through designed protein interfaces

机译:通过设计的蛋白质界面控制无机晶体上的蛋白质组装

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of proteins and other macromolecules to interact with inorganic surfaces is essential to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains(1-5), but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces, guided by the example of ice-binding proteins, which present arrays of threonine residues (matched to the ice lattice) that order clathrate waters into an ice-like structure(6). Here we design proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the potassium ion (K+) sublattice on muscovite mica (001). At low K+ concentration, individual molecules bind independently to mica in the designed orientations, whereas at high K+ concentration, the designs form two-dimensional liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimetres. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K+ lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micrometre-long single-protein-diameter wires and a designed trimeric interface yielded extensive honeycomb arrays. The nearest-neighbour distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nanometres with 2.1-nanometre selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.
机译:蛋白质和其他大分子与无机表面相互作用的能力对于生物学功能至关重要。这些相互作用中涉及的蛋白质带高电荷且通常富含羧酸侧链(1-5),但大多数蛋白质-无机界面的结构尚不清楚。我们以冰结合蛋白为例,探索了系统设计结构化蛋白-矿物质界面的可能性,该蛋白结合了苏氨酸残基阵列(与冰晶格匹配),将笼形水排列成冰状结构(6)。在这里,我们设计的蛋白质显示出最多54个与云母云母(001)上的钾离子(K +)亚晶格几何匹配的羧酸残基阵列。在低K +浓度下,单个分子以设计的方向独立地与云母结合,而在高K +浓度下,设计形成二维液晶相,这加剧了白云母晶格中的固有结构偏向,产生了数十个有序排列的蛋白质阵列毫米。设计的蛋白质-蛋白质相互作用的结合保留了蛋白质和K +晶格之间的匹配,从而导致了云母上扩展的自组装结构:设计的端到端相互作用产生了微米级的单蛋白质直径线,并产生了设计的三聚体界面广泛的蜂窝阵列。通过改变单体中重复单元的数目,可以将这些六边形阵列中的最近邻距离数字化设置在7.5至15.9纳米之间,选择性为2.1纳米。这些结果表明,蛋白质-无机晶格相互作用可以被系统地编程,并为设计蛋白质-无机杂化材料奠定了基础。

著录项

  • 来源
    《Nature》 |2019年第7764期|251-256|共6页
  • 作者单位

    Univ Washington, Dept Biochem, Seattle, WA 98195 USA|Univ Washington, Inst Prot Design, Seattle, WA 98195 USA;

    Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Phys Sci Div, Richland, WA 99354 USA|Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA;

    Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Phys Sci Div, Richland, WA 99354 USA|Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA;

    Univ Washington, Dept Biochem, Seattle, WA 98195 USA|Univ Washington, Inst Prot Design, Seattle, WA 98195 USA|Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Phys Sci Div, Richland, WA 99354 USA|Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号