首页> 外文期刊>Nature >Absence of amorphous forms when ice is compressed at low temperature
【24h】

Absence of amorphous forms when ice is compressed at low temperature

机译:冰在低温下压缩时,不存在非晶态形式

获取原文
获取原文并翻译 | 示例
           

摘要

Amorphous water ice comes in at least three distinct structural forms, all lacking long-range crystalline order. High-density amorphous ice (HDA) was first produced by compressing ice I to 11 kilobar at temperatures below 130 kelvin, and the process was described as thermodynamic melting(1), implying that HDA is a glassy state of water. This concept, and the ability to transform HDA reversibly into low-density amorphous ice, inspired the two-liquid water model, which relates the amorphous phases to two liquid waters in the deeply supercooled regime (below 228 kelvin) to explain many of the anomalies of water(2) (such as density and heat capacity anomalies). However, HDA formation has also been ascribed3 to a mechanical instability causing structural collapse and associated with kinetics too sluggish for recrystallization to occur. This interpretation is supported by simulations(3), analogy with a structurally similar system(4), and the observation of lattice-vibration softening as ice is compressed(5,6). It also agrees with recent observations of ice compression at higher temperatures-in the 'no man's land' regime, between 145 and 200 kelvin, where kinetics are faster-resulting in crystalline phases(7,8). Here we further probe the role of kinetics and show that, if carried out slowly, compression of ice I even at 100 kelvin (a region in which HDA typically forms) gives proton-ordered, but non-interpenetrating, ice IX', then proton-ordered and interpenetrating ice XV', and finally ice VIII'. By contrast, fast compression yields HDA but no ice IX, and direct transformation of ice I to ice XV' is structurally inhibited. These observations suggest that HDA formation is a consequence of a kinetically arrested transformation between low-density ice I and high-density ice XV' and challenge theories that connect amorphous ice to supercooled liquid water.
机译:非晶水冰至少具有三种不同的结构形式,都缺乏远距离的结晶顺序。高密度无定形冰(HDA)首先是通过在低于130开尔文的温度下将冰I压缩至11千巴来生产的,该过程被称为热力学熔化(1),这表明HDA是水的玻璃态。这个概念以及将HDA可逆地转化为低密度非晶冰的能力启发了两种液体水模型,该模型将非晶相与深度过冷状态(228开尔文以下)的两种液体水联系起来,以解释许多异常现象。水(2)(例如密度和热容量异常)。但是,HDA的形成也归因于机械不稳定性,导致结构崩溃,并且动力学太迟钝,无法发生重结晶。这种解释得到模拟(3)的支持,类似于结构相似的系统(4),并且观察到冰被压缩时晶格振动软化(5,6)。这也与最近在较高温度下冰压缩的观察结果相吻合-在145至200开尔文之间的``无人区''状态下,动力学更快地导致了结晶相(7,8)。在这里,我们进一步探讨了动力学的作用,并表明,如果缓慢进行,即使在100开尔文(通常形成HDA的区域)中对冰I进行压缩,也会产生质子有序但不可互穿的冰IX',然后是质子。有序和相互渗透的冰XV',最后是冰VIII'。相比之下,快速压缩会产生HDA,但不会产生冰IX,并且在结构上抑制了冰I向冰XV'的直接转化。这些观察结果表明,HDA的形成是低密度冰I和高密度冰XV'之间动力学停滞的转变的结果,并挑战了将无定形冰与过冷液态水联系起来的理论。

著录项

  • 来源
    《Nature》 |2019年第7757期|542-545|共4页
  • 作者单位

    Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37830 USA;

    Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37830 USA;

    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA;

    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA;

    Natl Res Council Canada, Ottawa, ON, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号