首页> 外文期刊>Nature >Subthreshold firing in Mott nanodevices
【24h】

Subthreshold firing in Mott nanodevices

机译:Mott纳米器件中的亚阈值激发

获取原文
获取原文并翻译 | 示例
           

摘要

Resistive switching, a phenomenon in which the resistance of a device can be modified by applying an electric field(1-5), is at the core of emerging technologies such as neuromorphic computing and resistive memories(6-9). Among the different types of resistive switching, threshold firing(10-14) is one of the most promising, as it may enable the implementation of artificial spiking neurons(7,13,14). Threshold firing is observed in Mott insulators featuring an insulator-to-metal transition(15,16), which can be triggered by applying an external voltage: the material becomes conducting ('fires') if a threshold voltage is exceeded(7,10-12). The dynamics of this induced transition have been thoroughly studied, and its underlying mechanism and characteristic time are well documented(10,12,17,18). By contrast, there is little knowledge regarding the opposite transition: the process by which the system returns to the insulating state after the voltage is removed. Here we show that Mott nanodevices retain a memory of previous resistive switching events long after the insulating resistance has recovered. We demonstrate that, although the device returns to its insulating state within 50 to 150 nanoseconds, it is possible to re-trigger the insulator-to-metal transition by using subthreshold voltages for a much longer time (up to several milliseconds). We find that the intrinsic metastability of first-order phase transitions is the origin of this phenomenon, and so it is potentially present in all Mott systems. This effect constitutes a new type of volatile memory in Mott-based devices, with potential applications in resistive memories, solid-state frequency discriminators and neuromorphic circuits.
机译:电阻切换是一种可以通过施加电场来改变器件电阻的现象(1-5),是诸如神经形态计算和电阻存储器(6-9)等新兴技术的核心。在不同类型的电阻切换中,阈值触发(10-14)是最有前途的方法之一,因为它可以实现人工加标神经元的实现(7,13,14)。在具有绝缘子到金属过渡的Mott绝缘子中观察到阈值燃烧(15,16),可以通过施加外部电压来触发:如果超过阈值电压,则材料会导电(``着火'')(7,10 -12)。对这种诱发跃迁的动力学进行了深入研究,并对其潜在机理和特征时间进行了充分记录(10,12,17,18)。相比之下,对相反的转换知之甚少:在移除电压后系统返回绝缘状态的过程。在这里,我们表明,Mott纳米器件在绝缘电阻恢复后很长时间就保留了先前的电阻开关事件的记忆。我们证明,尽管器件在50到150纳秒内恢复到绝缘状态,但仍可以通过使用更长的时间(长达数毫秒)的亚阈值电压来重新触发绝缘体到金属的转变。我们发现,一阶相变的内在亚稳性是这种现象的根源,因此,它存在于所有Mott系统中。这种效应构成了基于Mott的设备中的新型易失性存储器,在电阻存储器,固态鉴频器和神经形态电路中具有潜在的应用前景。

著录项

  • 来源
    《Nature》 |2019年第7756期|388-392|共5页
  • 作者单位

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Buenos Aires, FCEyN, Dept Fis, Buenos Aires, DF, Argentina|Consejo Nacl Invest Cient & Tecn, IFIBA, Ciudad Univ, Buenos Aires, DF, Argentina;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA|Univ Paris Saclay, Univ Paris Sud, CNRS, Unite Mixte Phys, Palaiseau, France;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

    Univ Los Andes, Dept Fis, Bogota, Colombia;

    Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Solides, Orsay, France;

    Univ Calif San Diego, Dept Phys, Ctr Adv Nanosci, La Jolla, CA 92093 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号