首页> 外文期刊>Nature >Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space
【24h】

Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space

机译:工程正交信号通路揭示了序列空间的稀疏占用

获取原文
获取原文并翻译 | 示例
           

摘要

Gene duplication is a common and powerful mechanism by which cells create new signalling pathways(1,2), but recently duplicated proteins typically must become insulated from each other and from other paralogues to prevent unwanted crosstalk(3). A similar challenge arises when new sensors or synthetic signalling pathways are engineered within cells or transferred between genomes. How easily new pathways can be introduced into cells depends on the density and distribution of paralogous pathways in the sequence space that is defined by their specificity-determining residues(4,5). Here we directly investigate how crowded this sequence space is, by generating novel two-component signalling proteins in Escherichia coli using cell sorting coupled to deep sequencing to analyse large libraries designed on the basis of coevolutionary patterns. We produce 58 insulated pathways comprising functional kinase-substrate pairs that have different specificities than their parent proteins, and demonstrate that several of these new pairs are orthogonal to all 27 paralogous pathways in E. coli. Additionally, from the kinase-substrate pairs generated, we identify sets consisting of six pairs that are mutually orthogonal to each other, which considerably increases the two-component signalling capacity of E. coli. These results indicate that sequence space is not densely occupied. The relative sparsity of paralogues in sequence space suggests that new insulated pathways can arise easily during evolution, or be designed de novo. We demonstrate the latter by engineering a signalling pathway in E. coli that responds to a plant cytokinin, without crosstalk to extant pathways. Our work also demonstrates how coevolution-guided mutagenesis and the mapping of sequence space can be used to design large sets of orthogonal protein-protein interactions.
机译:基因复制是细胞建立新的信号通路的一种常见且有力的机制(1,2),但是最近复制的蛋白质通常必须彼此绝缘,并与其他旁系同源物绝缘,以防止有害的串扰(3)。当新的传感器或合成信号通路在细胞内进行工程改造或在基因组之间转移时,也会出现类似的挑战。将新途径引入细胞的难易程度取决于序列空间中旁源途径的密度和分布,该序列空间由其特异性决定残基决定(4,5)。在这里,我们通过使用结合了深度测序的细胞分选技术在大肠杆菌中产生新型的两组分信号蛋白,来直接研究此序列空间的拥挤程度,从而分析基于协同进化模式设计的大型文库。我们产生58条绝缘的途径,包括功能激酶-底物对,其特异性不同于其亲本蛋白,并证明这些新对中的一些与大肠杆菌中的所有27种旁系途径正交。另外,从生成的激酶-底物对中,我们鉴定出由彼此相互正交的六对组成的集合,这大大增加了大肠杆菌的两组分信号传导能力。这些结果表明序列空间没有被密集地占据。序列空间中旁系同源物的相对稀疏性表明,在进化过程中很容易出现新的绝缘途径,或者可以重新设计。我们通过在大肠杆菌中响应植物细胞分裂素的信号传导途径来证明后者,而没有对现有途径的干扰。我们的工作还证明了协同进化指导的诱变和序列空间的映射可如何用于设计大组正交蛋白-蛋白相互作用。

著录项

  • 来源
    《Nature》 |2019年第7780期|702-706|共5页
  • 作者单位

    MIT Dept Biol Cambridge MA 02139 USA|MIT Dept Biol Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Dept Biol Cambridge MA 02139 USA;

    MIT Dept Biol Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Dept Biol Cambridge MA 02139 USA|MIT Howard Hughes Med Inst Cambridge MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号