首页> 外文期刊>Nature >Coherent electrical control of a single high-spin nucleus in silicon
【24h】

Coherent electrical control of a single high-spin nucleus in silicon

机译:硅中单个高自旋核的相干电控制

获取原文
获取原文并翻译 | 示例
           

摘要

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers(1) and demonstrations of quantum search(2) and factoring(3) algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron(4-6). However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods(7-9) relied on transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single Sb-123 (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 1961(10) but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots(11,12) could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.
机译:核自旋是高度相干的量子对象。在大型合奏中,它们的通过磁共振控制和检测已被广泛使用,例如在化学,医学,材料科学和采矿中。早期关于固态量子计算机的建议(1)以及量子搜索(2)和分解(3)算法的演示中也都提到了核自旋。扩大这样的概念需要控制单个原子核,当耦合到电子(4-6)时可以检测到。然而,由于无法定位或屏蔽磁场,因此需要通过振荡磁场来处理原子核,使它们在多自旋纳米级装置中的集成变得复杂。通过电场控制可以解决这个问题,但是以前的方法(7-9)依赖于通过电子-核超细相互作用将电信号转换成磁场,这严重影响了核的相干性。在这里,我们演示了使用硅纳米电子器件内产生的局部电场对单个Sb-123(spin-7 / 2)原子核进行相干量子控制。该方法利用了1961年提出的想法(10),但以前没有通过单个核通过实验实现。我们的结果得到了微观理论模型的定量支持,该理论模型揭示了核四极相互作用的纯电调制如何导致相干核自旋跃迁的发生,这是由于晶格应变而唯一可解决的。自旋相移时间为0.1秒,比通过需要耦合电子自旋来实现电驱动的方法所获得的相移时间要长几个数量级。这些结果表明高自旋四极核可以部署为使用全电控制的混沌模型,应变传感器和混合自旋机械量子系统。将电可控核与量子点集成在一起(11,12)可以为在硅中运行的可伸缩,基于核和电子自旋的量子计算机铺平道路,而无需振荡磁场即可运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号