首页> 外文期刊>Nature >In situ NMR metrology reveals reaction mechanisms in redox flow batteries
【24h】

In situ NMR metrology reveals reaction mechanisms in redox flow batteries

机译:原位NMR计量揭示了氧化还原液流电池中的反应机理

获取原文
获取原文并翻译 | 示例
           

摘要

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.
机译:大规模储能对于平衡可再生能源的生产和消耗变得越来越重要(1)。由廉价且可持续的氧化还原活性材料制成的有机氧化还原液流电池是有前途的存储技术,与钒基电池相比,该技术便宜且对环境的危害较小,但使用寿命较短且能量密度较低(2,3)。因此,需要在分子水平上有基本的见识来提高性能(4,5)。在这里,我们报告了两种研究氧化还原液流电池的原位核磁共振(NMR)方法,这些方法适用于两种氧化还原活性电解质:2,6-二羟基蒽醌(DHAQ)和4,4'-(((9,10-蒽醌) -2,6-二基)二氧基)二丁酸酯(DBEAQ)。在第一种方法中,当液体电解质流出电化学电池时,我们会监测其H-1 NMR位移的变化。在第二种方法中,我们观察到整个电化学电池中正负极同时发生的变化。使用整体磁化强度变化(通过水共振的H-1 NMR位移观察到)和醌共振的H-1位移的线展宽作为电荷状态的函数,我们测量了两者的电势差单电子对,确定并量化还原和氧化物种之间电子转移的速率,并确定自由基阴离子上未成对自旋的电子离域化程度。这些NMR技术使电解质分解和电池自放电得以实时研究,并显示DHAQ通过反应进行电化学分解,该反应可通过限制充电电压来最小化。我们预见了这些NMR方法在理解流动和其他电化学系统中广泛的氧化还原过程中的应用。

著录项

  • 来源
    《Nature》 |2020年第7798期|224-228|共5页
  • 作者单位

    Univ Cambridge Dept Chem Cambridge England;

    Univ Cambridge Dept Chem Cambridge England|Tongji Univ Shanghai Key Lab Chem Assessment & Sustainabil Dept Chem Shanghai Peoples R China;

    Univ Cambridge Dept Chem Cambridge England|Chalmers Univ Technol Dept Phys Gothenburg Sweden;

    Univ Cambridge Dept Chem Cambridge England|Seoul Natl Univ Sch Earth & Environm Sci Seoul South Korea;

    Imperial Coll London Dept Chem Engn Barrer Ctr London England;

    ICTP CSIC Inst Polymer Sci & Technol Madrid Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号