首页> 外文期刊>Nature >Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen
【24h】

Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen

机译:同步辐射红外光谱证明可能过渡为金属氢

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogen has been an essential element in the development of atomic, molecular and condensed matter physics(1). It is predicted that hydrogen should have a metal state(2); however, understanding the properties of dense hydrogen has been more complex than originally thought, because under extreme conditions the electrons and protons are strongly coupled to each other and ultimately must both be treated as quantum particles(3,4). Therefore, how and when molecular solid hydrogen may transform into a metal is an open question. Although the quest for metal hydrogen has pushed major developments in modern experimental high-pressure physics, the various claims of its observation remain unconfirmed(5-7). Here a discontinuous change of the direct bandgap of hydrogen, from 0.6 electronvolts to below 0.1 electronvolts, is observed near 425 gigapascals. This result is most probably associated with the formation of the metallic state because the nucleus zero-point energy is larger than this lowest bandgap value. Pressures above 400 gigapascals are achieved with the recently developed toroidal diamond anvil cell(8), and the structural changes and electronic properties of dense solid hydrogen at 80 kelvin are probed using synchrotron infrared absorption spectroscopy. The continuous downward shifts of the vibron wavenumber and the direct bandgap with increased pressure point to the stability of phase-III hydrogen up to 425 gigapascals. The present data suggest that metallization of hydrogen proceeds within the molecular solid, in good agreement with previous calculations that capture many-body electronic correlations(9).
机译:氢一直是原子,分子和凝聚态物理发展的重要元素(1)。据预测,氢应具有金属态(2);然而,了解致密氢的性质比原先想像的要复杂得多,因为在极端条件下,电子和质子之间会牢固地耦合在一起,最终必须将两者都视为量子粒子(3,4)。因此,分子固体氢如何以及何时可以转变成金属是一个悬而未决的问题。尽管对金属氢的追求推动了现代实验高压物理学的重大发展,但对其观测的各种说法仍未得到证实(5-7)。在425吉帕斯卡附近,观察到氢的直接带隙从0.6电子伏到低于0.1电子伏的不连续变化。该结果很可能与金属态的​​形成有关,因为原子核零点能量大于该最低带隙值。最近开发出的环形金刚石砧盒可实现高于400吉帕的压力(8),并使用同步加速器红外吸收光谱仪检测80开尔文下致密固体氢的结构变化和电子性质。随着压力的增加,振动子波数和直接带隙的连续向下移动表明III相氢的稳定性高达425吉帕斯卡。目前的数据表明,氢的金属化在分子固体中进行,与先前捕获多体电子相关性的计算非常吻合(9)。

著录项

  • 来源
    《Nature》 |2020年第7792期|631-635|共5页
  • 作者单位

    CEA DAM DIF Arpajon France;

    CEA DAM DIF Arpajon France|Synchrotron SOLEIL Gif Sur Yvette France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号