首页> 外文期刊>Nature >Submicrosecond entangling gate between trapped ions via Rydberg interaction
【24h】

Submicrosecond entangling gate between trapped ions via Rydberg interaction

机译:通过Rydberg相互作用在捕获离子之间的亚微秒纠缠门

获取原文
获取原文并翻译 | 示例
           

摘要

Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems~(1)with low-error entanglement gates operated within tens of microseconds using the vibrational motion of few-ion crystals~(2,3). To exceed the level of complexity tractable by classical computers the main challenge is to realize fast entanglement operations in crystals made up of many ions (large ion crystals)~(4). The strong dipole-dipole interactions in polar molecule~(5)and Rydberg atom~(6,7)systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems~(8). Here we combine the benefits of these approaches: we report a two-ion entangling gate with 700-nanosecond gate time that uses the strong dipolar interaction between trapped Rydberg ions, which we use to produce a Bell state with 78 per cent fidelity. The sources of gate error are identified and a total error of less than 0.2 per cent is predicted for experimentally achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes an approximate gate error of 10~(-4)in a large ion crystal of 100 ions. This provides a way to speed up and scale up trapped-ion quantum computers and simulators substantially.
机译:在大型系统中以比相干时间短得多的时间尺度生成量子纠缠是强大的量子仿真和计算的关键。陷阱离子是利用少数离子晶体的振动运动在几十微秒内运行的,具有低误差纠缠门的,最精确控制和最佳隔离的量子系统(1)。为了超过传统计算机可以解决的复杂性水平,主要挑战是在由许多离子组成的晶体(大离子晶体)中实现快速纠缠操作[4]。极性分子(5)和Rydberg原子(6,7)系统中很强的偶极-偶极相互作用可以使纠缠门更快,但在这些系统中需要证明稳定的独立于状态的约束与俘获离子相当〜(8) 。在这里,我们结合了这些方法的优点:我们报道了一个两离子纠缠门,其栅控时间为700纳秒,它利用捕获的Rydberg离子之间的强偶极相互作用,我们用它产生了保真度为78%的贝尔状态。可以确定门误差的来源,并通过实验可达到的参数预测总误差将小于0.2%。此外,我们预测残余耦合到运动模式将在100个离子的大离子晶体中贡献大约10〜(-4)的栅极误差。这提供了一种方法,可以从根本上加速和扩大捕获离子量子计算机和模拟器。

著录项

  • 来源
    《Nature》 |2020年第7803期|345-349|共5页
  • 作者

  • 作者单位

    Department of Physics Stockholm University;

    School of Physics and Astronomy University of Nottingham|Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems University of Nottingham;

    School of Physics and Astronomy University of Nottingham|Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems University of Nottingham|Institut für Theoretische Physik Universität Tübingen;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号