首页> 外文期刊>Nature >Operation of a silicon quantum processor unit cell above one kelvin
【24h】

Operation of a silicon quantum processor unit cell above one kelvin

机译:一个开尔文以上的硅量子处理器单元的操作

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)~(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)~(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots~(7-9). We coherently control the qubits using electrically driven spin resonance~(10,11)in isotopically enriched silicon~(12)~(28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during 'hot' operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures~(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures~(8,17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped~(4)He system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array~(18,19).
机译:从分子模拟到搜索算法,一旦量子计算机可以扩展到大量(通常为数百万个)量子位(qubit)〜(1-3),它​​们有望在某些重要应用中胜过传统计算机。例如,对于大多数固态量子比特技术,那些使用超导电路或半导体自旋缩放技术的技术带来了巨大的挑战,因为每增加一个量子比特都会增加产生的热量,而稀释冰箱的冷却功率在其工作温度下受到严格限制(低于100毫ikelvin)〜(4-6)。在这里,我们演示了可伸缩的硅量子处理器单元的操作,该单元包含两个量子位,限制在约1.5开尔文的量子点上。我们通过从电子存储库中隔离量子点,然后仅通过两个量子点之间的电子隧穿(7-9)来初始化和读取量子位来实现此目的。我们在同位素富集的硅〜(12)〜(28)Si中使用电驱动的自旋共振〜(10,11)相干地控制量子位,在“热”期间达到了98.6%的单量子位栅极保真度和2微秒的相干时间的操作,可与自然硅中自旋量子位的温度在毫微卡尔文温度(13-16)下相媲美。此外,我们表明,该晶胞可以在低至0.1特斯拉的磁场下工作,对应于3.5 GHz的量子位控制频率,其中量子位能量远低于热能。晶胞构成了一个完整的硅量子计算机的核心构件,并满足了纠错架构所要求的布局约束[8,17]。我们的工作表明,基于旋转的量子计算机可以在简单的Pumped〜(4)He系统(其冷却功率比稀释冰箱的冷却功率高几个数量级)中在更高的温度下运行,从而有可能实现经典控制的集成电子与量子位阵列〜(18,19)。

著录项

  • 来源
    《Nature》 |2020年第7803期|350-354|共5页
  • 作者

  • 作者单位

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications University of New South Wales;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications University of New South Wales|Research and Prototype Foundry The University of Sydney;

    Institut Quantique et Département de Physique Université de Sherbrooke;

    QCD Labs QTF Centre of Excellence Department of Applied Physics Aalto University Aalto Finland|IQM Finland Oy;

    School of Fundamental Science and Technology Keio University;

    Institut Quantique et Département de Physique Université de Sherbrooke|Quantum Information Science Program Canadian Institute for Advanced Research;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号