首页> 外文期刊>Nature >Ionic solids from common colloids
【24h】

Ionic solids from common colloids

机译:普通胶体的离子固体

获取原文
获取原文并翻译 | 示例
           

摘要

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.
机译:相反电荷的胶体颗粒通过一种方法被组装在水中,该方法可以精确地调节静电相互作用以生成宏观的单晶,从岩盐到纳米颗粒超晶格,复杂的结构可以通过简单的结构单元出现,这些结构单元通过库仑力相互吸引(1- 4)。然而,在微米尺度上,水中的胶体违背了由带相反电荷的伴侣形成晶体的直观简单想法,而不是形成诸如簇和凝胶之类的非平衡结构(5-7)。尽管已设计出各种系统来生长二元晶体(8-11),但尚未使用水性条件下的天然表面电荷来组装晶体材料。在这里,我们通过一种称为聚合物衰减库仑自组装的方法在水中形成离子胶体晶体。结晶的关键是使用中性聚合物将颗粒隔开明确定义的距离,使我们能够调整双电层的吸引力重叠,指导颗粒根据需要进行分散,结晶或永久固定。通过使用德拜(Debye)筛选长度微调组装,证明了宏观单晶的成核和生长。使用各种胶体颗粒和市售聚合物,根据粒径比选择与氯化铯,氯化钠,二硼化铝和K4C60等价的离子型胶体晶体。通过简单地稀释溶液盐固定后,即可将晶体从水中拉出以进行进一步处理,这表明从溶液相组件到干燥的固体结构的准确转化。与其他组装方法不同,在其他组装方法中,必须精心设计颗粒以编码结合信息(12-18),聚合物衰减的库仑自组装使常规的胶体可用作模型胶体离子,并引发了结晶。

著录项

  • 来源
    《Nature》 |2020年第7804期|487-490|共4页
  • 作者单位

    NYU Dept Chem New York NY 10003 USA;

    Univ Calif San Diego Dept Phys La Jolla CA 92093 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号