首页> 外文期刊>Nature >Nanosecond X-ray diffraction of shock-compressed superionic water ice
【24h】

Nanosecond X-ray diffraction of shock-compressed superionic water ice

机译:抗冲击压缩超前水冰的纳秒X射线衍射

获取原文
获取原文并翻译 | 示例
           

摘要

Since Bridgman's discovery of five solid water (H2O) ice phases(1) in 1912, studies on the extraordinary polymorphism of H2O have documented more than seventeen crystalline and several amorphous ice structures(2,3), as well as rich metastability and kinetic effects(4,5). This unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that H2O becomes superionic(6-12)-with liquid-like protons diffusing through the solid lattice of oxygen- when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin. Numerical simulations suggest that the characteristic diffusion of the protons through the empty sites of the oxygen solid lattice (1) gives rise to a surprisingly high ionic conductivity above 100 Siemens per centimetre, that is, almost as high as typical metallic (electronic) conductivity, (2) greatly increases the ice melting temperature(7-13) to several thousand kelvin, and (3) favours new ice structures with a close-packed oxygen lattice(13-15). Because confining such hot and dense H2O in the laboratory is extremely challenging, experimental data are scarce. Recent optical measurements along the Hugoniot curve (locus of shock states) of water ice VII showed evidence of superionic conduction and thermodynamic signatures for melting(16), but did not confirm the microscopic structure of superionic ice. Here we use laser-driven shockwaves to simultaneously compress and heat liquid water samples to 100-400 gigapascals and 2,000-3,000 kelvin. In situ X-ray diffraction measurements show that under these conditions, water solidifies within a few nanoseconds into nanometre-sized ice grains that exhibit unambiguous evidence for the crystalline oxygen lattice of superionic water ice. The X-ray diffraction data also allow us to document the compressibility of ice at these extreme conditions and a temperature- and pressure induced phase transformation from a body-centred-cubic ice phase (probably ice X) to a novel face-centred-cubic, superionic ice phase, which we name ice XVIII2,17.
机译:由于Bridgman在1912年发现了五个固体水(H2O)冰阶段(1),因此对H2O的非凡多态性的研究记录了超过17个结晶和几种无定形冰结构(2,3),以及丰富的亚稳定性和动力学(4,5)。这种独特的行为是部分归因于弱分子间氢键的几何挫折和光氢离子(质子)的大量量子运动。特别有趣的是预测H 2 O变为超前(6-12) - 与氧的液体样质子相连,当受到超过100种千兆位的极端压力和高于2,000kelvin的高温时,它们相对于氧气的固体晶格散射。数值模拟表明,质子通过氧固体晶格(1)的空位的特征扩散使得令人惊讶的高离子电导率为1000厘米以上100厘米,即几乎高达典型的金属(电子)导电性, (2)大大提高了冰熔化温度(7-13)至几千个开尔文,(3)封闭氧气晶格(13-15)的新型冰结构。因为在实验室中限制如此热和密集的H2O是极具挑战性的,所以实验数据很少。沿着Hugoniot曲线(冲击座位轨道)的最近光学测量水冰VII显示了用于熔化的超级导电和热力学签名的证据(16),但并未确认过度冰的微观结构。在这里,我们使用激光驱动的冲击波同时压缩和热液体水样至100-400千兆卡斯卡和2,000-3,000个开尔文。在原位X射线衍射测量表明,在这些条件下,水在几纳秒内固化为纳米尺寸的冰颗粒,该岩粒表现出消极水冰晶氧的明确依火。 X射线衍射数据还允许我们记录在这些极端条件下的冰的可压缩性,以及从身体中心 - 立方冰相(可能冰X)到新的面对立方体的温度和压力诱导的相变,超越冰阶段,我们命名冰XVIII2,17。

著录项

  • 来源
    《Nature》 |2019年第7755期|251-255|共5页
  • 作者单位

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA|Univ Rochester Laser Energet Lab Rochester NY USA|Univ Rochester Dept Mech Engn Rochester NY 14627 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号