首页> 外文期刊>Nature >The rheology and thermal history of Mars revealed by the orbital evolution of Phobos
【24h】

The rheology and thermal history of Mars revealed by the orbital evolution of Phobos

机译:PHOBOS轨道演化揭示火星的流变和热历史

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution and internal structure of Mars are, by comparison to its present-day surface, poorly known-although evidence of recent volcanic activity(1) suggests that its deep interior remains hot and convectively cooling. The cooling rate of Mars is related to its early thermal state and to its rheology, which determines its ability to deform and to dynamically evolve(2). Attempts to reconstruct the dynamic history of Mars and reveal its present-day structure, by combining the study of thermal evolution with surface observations, are limited by the interplay between several key quantities-including temperature, composition and rheology. Here we show that by considering Phobos (the closest satellite of Mars)-the orbital evolution of which is governed by the thermochemical history of Mars, through tidal interactions-we can gain insight into the thermal history and rheology of the planet. We investigated the long-term evolution of the main envelopes of Mars; these comprise a liquid metallic core that is overlain by a homogeneous silicate convecting mantle underneath an evolving heterogeneous lithospheric lid that includes a crust enriched in radiogenic elements. By exploiting the relationship between Mars and Phobos within an established in situ scenario for the early origin of the moons of Mars(3), we find that-initially-Mars was moderately hotter (100 to 200 kelvin) than it is today, and that its mantle sluggishly deforms in the dislocation creep regime. This corresponds to a reference viscosity of 10(22.2 +/- 0.5) pascal seconds and to a moderate to relatively weak intrinsic sensitivity of viscosity to temperature and pressure. Our approach predicts a present-day average crustal thickness of 40 +/- 25 kilometres and a surface heat flow of 20 +/- 1 milliwatts per square metre. We show that combining these predictions with data from future and ongoing space missions-such as InSight-could reduce uncertainties in Martian thermal and rheological histories, and help to uncover the origin of Phobos.
机译:MARS的演变和内部结构与其当前的表面相比,众所周知 - 虽然最近火山活动(1)的证据表明它的深度内部仍然很热和对流地冷却。火星的冷却速率与其早期热状态和其流变学相关,这决定了其变形和动态发展的能力(2)。通过组合具有表面观测的热量演进研究,重建马斯动态历史并揭示其当前结构的动态历史,受到几个关键量之间的相互作用的限制 - 包括温度,组成和流变。在这里,我们展示了通过考虑Phobos(最接近的火星卫星) - 通过潮汐相互作用的轨道演变,通过潮汐相互作用来实现 - 我们可以深入了解地球的热历史和流变学。我们调查了火星主要信封的长期演变;这些包括液体金属芯,其通过在演进的异质岩石盖下方的均匀硅酸盐对流罩覆盖,该硅酸盐盖在包括富含辐射元件的地壳。通过利用MARS和PHOBO之间的关系,在MARS的卫星早期的原位方案中建立的(3),我们发现最初的火星是时期更热的(100至200个keelvin),而不是今天,这是它的地幔在脱位蠕变政权中勉强变形。这对应于10(22.2 +/- 0.5)帕斯卡秒的参考粘度,并且在温度和压力的中等至相对较弱的内在敏感性。我们的方法预测了每天平均地壳厚度为40 + /-25公里,表面热流为每平方米20 +/- 1毫瓦。我们展示了与来自未来和持续空间任务的数据相结合的这些预测 - 例如洞察力 - 可以减少火星热和流变历史中的不确定性,并有助于揭示Phobos的起源。

著录项

  • 来源
    《Nature》 |2019年第7757期|523-527|共5页
  • 作者单位

    Univ Sorbonne Paris Cite CNRS Inst Phys Globe Paris Paris France;

    Univ Sorbonne Paris Cite CNRS Inst Phys Globe Paris Paris France;

    CALTECH Jet Prop Lab Pasadena CA USA;

    CALTECH Jet Prop Lab Pasadena CA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号