首页> 外文期刊>Nature >Fidelity benchmarks for two-qubit gates in silicon
【24h】

Fidelity benchmarks for two-qubit gates in silicon

机译:硅中的双量子栅栏的保真基准

获取原文
获取原文并翻译 | 示例
           

摘要

Universal quantum computation will require qubit technology based on a scalable platform(1), together with quantum error correction protocols that place strict limits on the maximum infidelities for one-and two-qubit gate operations(2,3). Although various qubit systems have shown high fidelities at the one-qubit level(4-10), the only solid-state qubits manufactured using standard lithographic techniques that have demonstrated two-qubit fidelities near the fault-tolerance threshold(6) have been in superconductor systems. Silicon-based quantum dot qubits are also amenable to large-scale fabrication and can achieve high single-qubit gate fidelities (exceeding 99.9 per cent) using isotopically enriched silicon(11,12). Two-qubit gates have now been demonstrated in a number of systems(13-15), but as yet an accurate assessment of their fidelities using Clifford-based randomized benchmarking, which uses sequences of randomly chosen gates to measure the error, has not been achieved. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80 to 89 per cent, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7 per cent and an average controlled-rotation fidelity of 98 per cent. These fidelities are found to be limited by the relatively long gate times used here compared with the decoherence times of the qubits. Silicon qubit designs employing fast gate operations with high Rabi frequencies(16,17), together with advanced pulsing techniques(18), should therefore enable much higher fidelities in the near future.
机译:通用量子计算将需要基于可伸缩平台(1)的Qubit技术,以及Quantum纠错协议,该误差校正协议将严格限制对一个和两个Qubit栅极操作(2,3)的最大不一体。尽管各种量子位系统在单个Qubit级别(4-10)上显示了高保真度(4-10),但是使用在容错阈值(6)附近的标准光刻技术制造的唯一固态QUBITS已经在发生故障阈值(6)附近超导体系统。基于硅的量子点距离也适用于大规模制造,并且可以使用同位素富集的硅(11,12)来实现高单反栅极保真度(超过99.9%)。现在已经在许多系统(13-15)中证明了两种Qubit盖茨,但尚未使用基于Clifford的随机基准测试的精确评估它们使用序列来测量误差的序列,并未实现。在这里,对于在栅极定义的量子点的电子旋转状态编码的Qubits,我们向贝尔状态断层扫描展示了80%至89%的忠诚,两种随机基准,平均克利福德门保护度为94.7%,平均控制旋转保真度为98%。这些保真度被认为受到这里使用的相对长的栅极次数的限制,与Qubits的脱机时间相比。因此,硅量子位设计采用具有高rabi频率(16,17)的快速栅极操作以及高级脉冲技术(18),因此应在不久的将来实现更高的保险费。

著录项

  • 来源
    《Nature》 |2019年第7757期|532-536|共5页
  • 作者单位

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia|UCL London Ctr Nanotechnol London England;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Keio Univ Sch Fundamental Sci & Technol Yokohama Kanagawa Japan;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

    Univ New South Wales Sch Elect Engn & Telecommun Ctr Quantum Computat & Commun Technol Sydney NSW Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号