首页> 外文期刊>Nature >Reconstructing the late-accretion history of the Moon
【24h】

Reconstructing the late-accretion history of the Moon

机译:重建月亮的晚期增生历史

获取原文
获取原文并翻译 | 示例
           

摘要

The importance of highly siderophile elements (HSEs; namely, gold, iridium, osmium, palladium, platinum, rhenium, rhodium and ruthenium) in tracking the late accretion stages of planetary formation has long been recognized. However, the precise nature of the Moon's accretional history remains enigmatic. There is a substantial mismatch in the HSE budgets of the Earth and the Moon, with the Earth seeming to have accreted disproportionally more HSEs than the Moon(1). Several scenarios have been proposed to explain this conundrum, including the delivery of HSEs to the Earth by a few big impactors(1), the accretion of pebble-sized objects on dynamically cold orbits that enhanced the Earth's gravitational focusing factor(2), and the 'sawtooth' impact model, with its much reduced impact flux before about 4.10 billion years ago(3). However, most of these models assume a high impactor-retention ratio (the fraction of impactor mass retained on the target) for the Moon. Here we perform a series of impact simulations to quantify the impactor-retention ratio, followed by a Monte Carlo procedure considering a monotonically decaying impact flux(4), to compute the impactor mass accreted into the lunar crust and mantle over their histories. We find that the average impactor-retention ratio for the Moon's entire impact history is about three times lower than previously estimated(1,3). Our results indicate that, to match the HSE budgets of the lunar crust and mantle(5,6), the retention of HSEs should have started 4.35 billion years ago, when most of the lunar magma ocean was solidified(7,8). Mass accreted before this time must have lost its HSEs to the lunar core, presumably during lunar mantle crystallization(9). The combination of a low impactor-retention ratio and a late retention of HSEs in the lunar mantle provides a realistic explanation for the apparent deficit of the Moon's late-accreted mass relative to that of the Earth.
机译:长期以来,长期以来,长期以来,长期以来,已经认识到,在跟踪行星形成后期增压的后期增压阶段的持续性元素(HSES;即,金,铱,锇,钯,铂,铼,铑和钌)的重要性。然而,月亮的累积历史的确切性质仍然是神秘的。地球和月球的HSE预算中存在大量不匹配,地球似乎比月亮(1)所呈现的更加不成比例的HSE。已经提出了几种情况来解释这一难题,包括通过一些大冲击器(1)将HSE传递到地球上,鹅卵石大小对象上的动态冷轨道上的吸收,增强了地球的重力聚焦因子(2),以及“锯齿”影响模型,在约40亿年前(3)之前的冲击通量减少。然而,这些模型中的大多数假设高撞击器保持率(用于月球上的撞击物质量的一部分)。在这里,我们执行一系列冲击模拟以量化冲击措施,然后考虑到蒙特卡罗程序,考虑到单调衰减的冲击通量(4),以将撞击物质量计算成阴壳和姿势的地幔。我们发现月球整个冲击历史的平均撞击率保持率大约比以前估计的三倍(1,3)。我们的结果表明,为了匹配月球地壳和地幔的HSE预算(5,6),当大多数农历岩浆海洋被凝固时,HSE的保留应该已经开始了43.5亿年前的时间(7,8)。在此时间之前的质量必须丢失其HSE到月球核心,大概在月球地幔结晶(9)期间。在月球地幔中,低撞击保留率和HSE的晚期保留的组合为月球晚在群体相对于地球的明显赤字提供了现实的解释。

著录项

  • 来源
    《Nature》 |2019年第7764期|226-229|共4页
  • 作者单位

    Macau Univ Sci & Technol State Key Lab Lunar & Planetary Sci Taipa Macau Peoples R China|Museum Nat Kunde Leibniz Inst Evolut & Biodivers Sci Berlin Germany;

    Museum Nat Kunde Leibniz Inst Evolut & Biodivers Sci Berlin Germany|Planetary Sci Inst Tucson AZ USA|RAS Inst Geosphere Dynam Moscow Russia;

    Univ Nice Sophia Antipolis CNRS Observ Cote Azur Dept Lagrange Nice France;

    Univ Calif Davis Dept Earth & Planetary Sci Davis CA 95616 USA;

    Free Univ Berlin Inst Geol Wissensch Berlin Germany;

    Museum Nat Kunde Leibniz Inst Evolut & Biodivers Sci Berlin Germany|Free Univ Berlin Inst Geol Wissensch Berlin Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号