首页> 外文期刊>Nature >Massively parallel coherent laser ranging using a soliton microcomb
【24h】

Massively parallel coherent laser ranging using a soliton microcomb

机译:使用Soliton MicroComb的大规模平行相干激光测距

获取原文
获取原文并翻译 | 示例
           

摘要

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.
机译:相干测距,也称为频率调制的连续波(FMCW)基于激光检测和测距(LIDAR)(1)用于自动驱动(2,3)中的远程三维距离和VELOCIMETRY。 FMCW LIDAR使用频率啁啾波形将距离(4,5)映射到频率(4,5),同时测量反射激光的多普勒偏移,类似于声纳或雷达(6,7),并且相干检测防止阳光和其他LIDAR系统的干扰。然而,与使用阵列的现代飞行时间测距系统相比,相干范围具有较低的采集速度,并且需要精确地啁啾(8)和高度相干(5)激光源,妨碍激光雷达系统和阻抗并行化。单独的激光器。在这里,我们展示了一种使用超低损失光子芯片的孤子微区(9)的大规模平行的相干激光雷达方案。通过用多达几个Gigahertz的微压的孤子存在范围(10)的孤子存在范围(10)中的泵激光快速啁啾,并且扫描速率高达10兆赫,在孤子脉冲流的底层载波波形中发生快速频率变化,但保留了孤子脉冲流的脉冲重复率。结果,从单个窄线宽泵浦激光器的啁啾一次被转移到孤子的所有光谱梳齿一次,从而在FMCW激光雷达中实现并行性。使用这种方法,我们产生30个不同的通道,以每秒三百万像素的等效速率来展示并联距离和速度测量,有可能提高每秒150万像素超过150万像素的采样率,并增加FMCW激光器的图像刷新率最多两个数量级,而无法降低眼睛安全。这种方法,当基于纳米光学光栅(12)结合光子相位阵列(11)时,为紧凑,大规模平行和超高帧速率相干LIDAR系统提供技术基础。

著录项

  • 来源
    《Nature》 |2020年第7807期|164-170|共7页
  • 作者单位

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland;

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland;

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland;

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland;

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland|NIST Time & Frequency Div Boulder CO USA;

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland;

    Swiss Fed Inst Technol EPFL Lab Photon & Quantum Measurements LPQM Lausanne Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号