首页> 外文期刊>Nature >Quantum correlations between light and the kilogram-mass mirrors of LIGO
【24h】

Quantum correlations between light and the kilogram-mass mirrors of LIGO

机译:Ligo的光与千克质量镜之间的量子相关性

获取原文
获取原文并翻译 | 示例
           

摘要

The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit(1-4). When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects(5). Here we confirm experimentally the theoretical prediction(5)that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements.Quantum correlations between the laser beams and the positions of the 40-kg mirrors of LIGO are confirmed experimentally, enabling high-precision measurements of both gravitational waves and macroscopic quantum states.
机译:Heisenberg不确定原理抑制了与更高的精度更高的微型力和位移的测量,这对可以连续测量物体的位置的精度施加了限制,称为标准量子限制(1-4)。当光被用作探针时,标准量子限制产生从施加到物体的光子辐射压力的不确定性与光电检测中的光子数之间的平衡。超越标准量子限制的唯一方法是通过在物体的位置/动量不确定度与它反射(5)的光的位置/动量不确定性之间引入相关性。在这里,我们通过实验证实了理论上预测(5),即这种类型的量子相关在激光干涉仪重力波观测台(LiGo)中是天然产生的。我们表征并比较在不挤压的情况下采取的噪声光谱,并且挤压真空状态以不同的正交角度注入。在减去经典噪声后,我们的测量结果表明,200千瓦激光束的阶段中的量子机械不确定性以及高级LIGO探测器的40千克镜子的位置产生了一个值为1.4的关节量子不确定性( 3分贝)低于标准量子限制。我们预期量子相关性不仅可以改善引力波的观察,而且更广泛的量子噪声限制测量。实验证实了激光束与40kg镜的40kg镜子的位置之间的Quantum。启用重力波和宏观量子状态的高精度测量。

著录项

  • 来源
    《Nature》 |2020年第7814期|43-47|共5页
  • 作者单位

    MIT LIGO 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT LIGO 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT LIGO 77 Massachusetts Ave Cambridge MA 02139 USA;

    Australian Natl Univ OzGrav Canberra ACT Australia;

    MIT LIGO 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT LIGO 77 Massachusetts Ave Cambridge MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号