首页> 外文期刊>Nature >Spin squeezing of 10~(11) atoms by prediction and retrodiction measurements
【24h】

Spin squeezing of 10~(11) atoms by prediction and retrodiction measurements

机译:通过预测和透明测量旋转10〜(11)个原子的旋转

获取原文
获取原文并翻译 | 示例
           

摘要

The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit(1), which is proportional to 1/root N. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states(2). Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 10(11) rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states(3,4) to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments(5-10), with a corresponding angular variance of the squeezed collective spin of 4.6 x 10(-13) radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.
机译:使用N不胶合颗粒的量子探针的测量灵敏度受到标准量子极限(1)的限制,其与1 /根N成比例。然而,通过利用旋转挤压状态(例如旋转挤压状态)可以克服该限制。 (2)。在这里,我们报告了基于测量的量子状态,超过了探测宏观蒸气细胞中含有的10(11)个铷原子的集体旋转的标准量子限制。通过频闪量子非拆卸(QND)测量的序列来制备和验证该状态。然后,我们应用过去量子状态(3,4)的理论,从早期和后面的QND测量结果中获取自旋状态信息。过去量子状态而不是在实验室中建立物理挤压状态,而是来自这些预测和透明测量的组合系统信息。该信息相当于5.6分贝的降噪,以及相对于相干旋转状态的4.5分贝的病态相关挤压。过去的量子状态在旋转组分上产生比通过常规QND测量获得的量子的限制。我们的测量使用比以前的挤压实验(5-10)更多的原子数量,具有4.6×10(-13)弧度平方的挤压集体旋转的相应角度方差。虽然这项工作植根于量子测量的基础理论,但它可以在量子计量和量子参数估计中找到实际应用,因为我们通过将我们的协议应用于量子增强的原子磁力测量来证明。

著录项

  • 来源
    《Nature》 |2020年第7807期|159-163|共5页
  • 作者单位

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China|Wenzhou Univ Dept Phys Wenzhou Zhejiang Peoples R China;

    Coll William & Mary Dept Phys Williamsburg VA 23185 USA;

    Coll William & Mary Dept Phys Williamsburg VA 23185 USA;

    Fudan Univ Minist Educ Key Lab Appl Ion Beam Phys Lab Shanghai Peoples R China|Fudan Univ Inst Modern Phys Shanghai Peoples R China;

    Aarhus Univ Dept Phys & Astron Aarhus Denmark;

    Shanxi Univ State Key Lab Quantum Optic & Quantum Optic Devic Taiyuan Peoples R China|Univ Oxford Clarendon Lab Oxford England;

    Fudan Univ Minist Educ State Key Lab Surface Phys Dept Phys Shanghai Peoples R China|Fudan Univ Minist Educ Key Lab Micro & Nano Photon Struct Shanghai Peoples R China|Shanxi Univ State Key Lab Quantum Optic & Quantum Optic Devic Taiyuan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号