首页> 外文期刊>Nature >Protecting a bosonic qubit with autonomous quantum error correction
【24h】

Protecting a bosonic qubit with autonomous quantum error correction

机译:用自主量子误差校正保护振动态量子

获取原文
获取原文并翻译 | 示例
           

摘要

To build a universal quantum computer from fragile physical qubits, effective implementation of quantum error correction (QEC)(1) is an essential requirement and a central challenge. Existing demonstrations of QEC are based on an active schedule of error-syndrome measurements and adaptive recovery operations(2,3,4,5,6,7) that are hardware intensive and prone to introducing and propagating errors. In principle, QEC can be realized autonomously and continuously by tailoring dissipation within the quantum system(1,8,9,10,11,12,13,14), but so far it has remained challenging to achieve the specific form of dissipation required to counter the most prominent errors in a physical platform. Here we encode a logical qubit in Schrodinger cat-like multiphoton states(15) of a superconducting cavity, and demonstrate a corrective dissipation process that stabilizes an error-syndrome operator: the photon number parity. Implemented with continuous-wave control fields only, this passive protocol protects the quantum information by autonomously correcting single-photon-loss errors and boosts the coherence time of the bosonic qubit by over a factor of two. Notably, QEC is realized in a modest hardware setup with neither high-fidelity readout nor fast digital feedback, in contrast to the technological sophistication required for prior QEC demonstrations. Compatible with additional phase-stabilization and fault-tolerant techniques(16,17,18), our experiment suggests quantum dissipation engineering as a resource-efficient alternative or supplement to active QEC in future quantum computing architectures.A logical qubit encoded in multi-photon states of a superconducting cavity is protected with autonomous correction of certain quantum errors by tailoring the dissipation it is exposed to.
机译:为了从易碎物理额度构建通用量子计算机,有效地实现量子误差校正(QEC)(1)是基本要求和中央挑战。 QEC的现有演示基于误差综合征测量和自适应恢复操作(2,3,4,5,6,7)的主动计划,这是硬件密集的,并且容易引入和传播误差。原则上,QEC可以通过量子系统内定制耗散(1,8,9,10,11,12,13,14)来自主和连续实现,但到目前为止,它一直挑战,以实现所需的具体耗散形式抵消物理平台中最突出的错误。在这里,我们在超导腔的Schrodinger猫样多光子状态(15)中编码逻辑调查态,并证明了稳定误差综合征操作者:光子数奇偶校验的纠正耗散过程。仅利用连续波控制场实现,该无源协议通过自主校正单光子损耗误差来保护量子信息,并通过两个超过两个倍数来提高振荡QUBit的相干时间。值得注意的是,QEC在一个适度的硬件设置中实现了既不是高保真读数也不快速数字反馈,与先前QEC示范所需的技术复杂程度相比。我们的实验兼容额外的相位稳定和容错技术(16,17,18),提出了量子耗散工程作为未来量子计算体系结构中有效QEC的资源有效的替代或补充。在多光子中编码的逻辑量子比特通过根据暴露于散热来保护超导腔的状态具有自主校正。

著录项

  • 来源
    《Nature》 |2021年第7845期|243-248|共6页
  • 作者单位

    Univ Massachusetts Dept Phys Amherst MA 01003 USA;

    Northwestern Univ Dept Phys & Astron Evanston IL USA;

    Univ Massachusetts Dept Phys Amherst MA 01003 USA;

    Univ Massachusetts Dept Phys Amherst MA 01003 USA;

    Northwestern Univ Dept Phys & Astron Evanston IL USA;

    Univ Massachusetts Dept Phys Amherst MA 01003 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号