首页> 外文期刊>Nature >Demonstration of a trapped-ion atomic clock in space
【24h】

Demonstration of a trapped-ion atomic clock in space

机译:空间中捕获离子原子时钟的示范

获取原文
获取原文并翻译 | 示例
           

摘要

Operating in space, NASA's Deep Space Atomic Clock, a trapped-ion clock, is shown to have long-term stability and drift that are an order of magnitude better than current space clocks.Atomic clocks, which lock the frequency of an oscillator to the extremely stable quantized energy levels of atoms, are essential for navigation applications such as deep space exploration(1) and global navigation satellite systems(2), and are useful tools with which to address questions in fundamental physics(3-6). Such satellite systems use precise measurement of signal propagation times determined by atomic clocks, together with propagation speed, to calculate position. Although space atomic clocks with low instability are an enabling technology for global navigation, they have not yet been applied to deep space navigation and have seen only limited application to space-based fundamental physics, owing to performance constraints imposed by the rigours of space operation(7). Methods of electromagnetically trapping and cooling ions have revolutionized atomic clock performance(8-13). Terrestrial trapped-ion clocks operating in the optical domain have achieved orders-of-magnitude improvements in performance over their predecessors and have become a key component in national metrology laboratory research programmes(13), but transporting this new technology into space has remained challenging. Here we show the results from a trapped-ion atomic clock operating in space. On the ground, NASA's Deep Space Atomic Clock demonstrated a short-term fractional frequency stability of 1.5 x 10(-13)/tau(1/2) (where tau is the averaging time)(14). Launched in 2019, the clock has operated for more than 12 months in space and demonstrated there a long-term stability of 3 x 10(-15) at 23 days (no drift removal), and an estimated drift of 3.0(0.7) x 10(-16) per day. Each of these exceeds current space clock performance by up to an order of magnitude(15-17). The Deep Space Atomic Clock is particularly amenable to the space environment because of its low sensitivity to variations in radiation, temperature and magnetic fields. This level of space clock performance will enable one-way navigation in which signal delay times are measured in situ, making near-real-time navigation of deep space probes possible(18).
机译:在太空中运行,美国宇航局的深空原子钟,捕获离子时钟,被认为具有长期稳定性和漂移,这些稳定性比当前空间时钟更好的数量级。散发器锁定振荡器的频率极其稳定的量化量的原子,对于导航应用是必不可少的导航应用(1)和全球导航卫星系统(2),是解决基本物理学中的有用工具(3-6)。这种卫星系统使用精确测量由原子钟确定的信号传播时间,以及传播速度,以计​​算位置。虽然具有低不稳定性的空间原子钟是全球导航的支持技术,但它们尚未应用于深度空间导航,并且由于空间操作严谨的性能限制,它们仅适用于基于空间的基础物理学的应用程序。( 7)。电磁捕获和冷却离子的方法具有旋纹原子钟性能(8-13)。在光学域中运行的地面陷阱离子时钟已经实现了对其前辈的性能的数量级,并且已成为国家计量实验室研究计划(13)中的关键组成部分,但将这项新技术运送到太空中保持着具有挑战性。在这里,我们展示了在空间中运行的捕获离子原子时钟的结果。在地面上,美国宇航局的深度空间原子时钟展示了1.5×10(-13)/ Tau(1/2)的短期分数频率稳定性(其中Tau是平均时间)(14)。 2019年推出,时钟在空间中运行超过12个月,并在23天(无漂移)的长期稳定性为3×10(-15),估计漂移为3.0(0.7)x每天10(-16)。这些中的每一个超出到幅度的当前空间时钟性能(15-17)。由于其对辐射,温度和磁场的变化的低灵敏度,深空原子钟特别适合空间环境。这种空间时钟性能水平使得能够以原位测量信号延迟时间,使得深空探测器的近实时导航成为可能(18)。

著录项

  • 来源
    《Nature》 |2021年第7865期|43-47|共5页
  • 作者单位

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

    CALTECH Jet Prop Lab Pasadena CA 91109 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号