首页> 外文期刊>Nature >Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure
【24h】

Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure

机译:双层Wigner晶体在过渡金属二硫代甲基异质结构

获取原文
获取原文并翻译 | 示例
           

摘要

One of the first theoretically predicted manifestations of strong interactions in many-electron systems was the Wigner crystal(1-3), in which electrons crystallize into a regular lattice. The crystal can melt via either thermal or quantum fluctuations(4). Quantum melting of the Wigner crystal is predicted to produce exotic intermediate phases(5,6) and quantum magnetism(7,8) because of the intricate interplay of Coulomb interactions and kinetic energy. However, studying two-dimensional Wigner crystals in the quantum regime has often required a strong magnetic field(9-11) or a moire superlattice potential(12-15), thus limiting access to the full phase diagram of the interacting electron liquid. Here we report the observation of bilayer Wigner crystals without magnetic fields or moire potentials in an atomically thin transition metal dichalcogenide heterostructure, which consists of two MoSe2 monolayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states at symmetric (1:1) and asymmetric (3:1, 4:1 and 7:1) electron doping of the two MoSe2 layers at cryogenic temperatures. We attribute these features to bilayer Wigner crystals composed of two interlocked commensurate triangular electron lattices, stabilized by inter-layer interaction(16). The Wigner crystal phases are remarkably stable, and undergo quantum and thermal melting transitions at electron densities of up to 6 x 10(12) per square centimetre and at temperatures of up to about 40 kelvin. Our results demonstrate that an atomically thin heterostructure is a highly tunable platform for realizing many-body electronic states and probing their liquid-solid and magnetic quantum phase transitions(4-8,17).Optical signatures reveal correlated insulating Wigner crystals-electron solids-in a bilayer of a two-dimensional transition metal dichalcogenide, MoSe2, with hexagonal boron nitride between the layers.
机译:许多电子系统中强相互作用的第一个理论上预测的表现之一是Wigner晶体(1-3),其中电子结晶到常规晶格中。晶体可以通过热量或量子波动(4)熔化。预计Quigner晶体的量子熔化,以产生异国情调的中间阶段(5,6)和量子磁性(7,8),因为库仑相互作用和动能的复杂相互作用。然而,在量子制度中研究二维Wigner晶体通常需要强磁场(9-11)或莫尔超晶格电位(12-15),从而限制对相互作用的电子液体的全相图的访问。在这里,我们报告了在原子薄过渡金属二甲胺异质结构异质结构中没有磁场或莫尔电位的双层Wigner晶体的观察,其由两种由六边形氮化硼分离的MOSE2单层组成。我们在低温温度下观察在对称(1:1)和在对称(1:1)和不对称(3:1,4:1和7:1)电子掺杂在低温温度下的电子掺杂的光学签名。我们将这些特征归因于由两个互锁的相称三角形电子格子组成的双层Wigner晶体,通过层间相互作用(16)稳定。 Wigner晶体相具有显着稳定的稳定性,并且在每平方厘米的电子密度高达6×10(12)的电子密度和高达约40kelvin的温度下进行量子和热熔过渡。我们的结果表明,原子上薄的异质结构是一种高度可调谐的平台,用于实现许多身体电子状态并探测其液体固态和磁性量子转变(4-8,17)。光学签名揭示相关绝缘晶体晶体 - 电子固体 - 在二维过渡金属二甲基化物,MOSE2的双层中,在层之间具有六边形氮化硼。

著录项

  • 来源
    《Nature》 |2021年第7865期|48-52|共5页
  • 作者单位

    Harvard Univ Dept Chem & Chem Biol Cambridge MA 02138 USA|Harvard Univ Dept Phys Cambridge MA 02138 USA|Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Harvard Univ Dept Chem & Chem Biol Cambridge MA 02138 USA|Harvard Univ Dept Phys Cambridge MA 02138 USA;

    Harvard Univ Dept Chem & Chem Biol Cambridge MA 02138 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA|Clemson Univ Dept Phys & Astron Clemson SC 29634 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA;

    Harvard Univ Dept Chem & Chem Biol Cambridge MA 02138 USA|Harvard Univ Dept Phys Cambridge MA 02138 USA;

    Natl Inst Mat Sci Int Ctr Mat Nanoarchitecton Tsukuba Ibaraki Japan;

    Natl Inst Mat Sci Res Ctr Funct Mat Tsukuba Ibaraki Japan;

    Budapest Univ Technol & Econ Inst Phys MTA BME Quantum Dynam & Correlat Res Grp Budapest Hungary;

    Harvard Univ Dept Phys Cambridge MA 02138 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA|Harvard Univ John A Paulson Sch Engn & Appl Sci Cambridge MA 02138 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA|Swiss Fed Inst Technol Inst Theoret Phys Zurich Switzerland;

    Harvard Univ Dept Chem & Chem Biol Cambridge MA 02138 USA|Harvard Univ Dept Phys Cambridge MA 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号