首页> 外文期刊>Nature >Cellular fluidics
【24h】

Cellular fluidics

机译:细胞流体

获取原文
获取原文并翻译 | 示例
           

摘要

Cellular fluidics provides a platform of unit-cell-based, three-dimensional structures for the deterministic control of multiphase flow, transport and reaction processes.The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas-liquid-solid interfaces and capillary phenomena in porous media(1,2). Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate(3-5), and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering(6-8). Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures-enabled by emerging 3D printing methods(9,10)-for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be 'programmed' through architected design of cell type, size and relative density. We demonstrate gas-liquid transport processes such as transpiration and absorption, using evaporative cooling and CO2 capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.
机译:细胞流体提供了一个基于单元的三维结构的平台,用于多相流动,运输和反应过程的确定性控制。自然界提供了许多通过演化优化的多相传输和反应过程的实例。这些现象处于多个长度和时间尺度进行,并且通常包括多孔介质中的气液固体界面和毛细管现象(1,2)。许多生物和生活系统已经发展以优化流体运输。然而,生物的东西是特殊的复杂性,并且非常难以复制(3-5),并且人造的微流体装置(通常是平面的和封闭的)对多相过程工程(6-8)非常有限。在这里,我们介绍了蜂窝化流体的概念:通过新出现的3D印刷方法(9,10)实现了基于单元的基于单元的三维结构的平台 - 对于多相流,传输和反应过程的确定性控制。我们显示这些结构中的流动可以通过架构设计的单元类型,大小和相对密度“编程”。我们展示了蒸气液输送方法,例如蒸腾和吸收,使用蒸发冷却和CO 2作为实施例。我们设计和证明具有毛细管驱动和主动泵送的液体流动的三维细胞流体装置中的优先液体和气体输送途径,以及预先编程模式的选择性金属化的实例。我们的研究结果表明,架构蜂窝材料的设计和制造,与多相接口的稳态和动态行为的分析和数值预测相结合,提供了三维流体输送的确定性控制。细胞流体可以改变设计空间以进行多相输送和反应过程的空间和时间控制。

著录项

  • 来源
    《Nature》 |2021年第7865期|58-65|共8页
  • 作者单位

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号