首页> 外文期刊>Nature >Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes
【24h】

Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes

机译:在二维半导体二极管中接近内在激子物理极限

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices.Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality(1-5). Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
机译:具有缺陷范德瓦尔斯触点的二维过渡金属二甲基甲基二极管允许最小化外部界面紊乱主导的重组,并获得二维半导体器件中的内在激发性行为。无关(2D)半导体引起了强烈的兴趣对于它们独特的光物理性质,包括大的激子结合能量和强栅极可调性,从减少的维度(1-5)产生。尽管努力相当大,但在原始2D半导体的基本上表格和实际装置性能之间持续存在,这通常被许多外在因素困扰,包括半导体接触界面的化学障碍。这里,通过使用van der waals与最小界面障碍的触点,我们抑制接触诱导的震撼读堂厅重组,并在2D半导体二极管中实现几乎内在的光学检测装置性能。在分开栅极几何形状中使用静电场在钨联合二极管中独立地调节电子和孔掺杂,我们在低电荷密度下发现短路光电流中的异常峰。时间分离的光致发光显示出在电荷中性制度中的大约800个皮秒的大约800个皮秒,由于激子充电螺旋形重组增加,在高掺杂密度下大约800个皮秒为大约50微米秒。连同,我们表明激子 - 扩散限制模型很好地解释了依赖于电荷密度依赖性的短路光电流,通过扫描光电流显微镜进一步证实了结果。因此,我们展示了激子扩散和双体激子充电螺旋钻重组在2D装置中的基本作用,并突出显示2D半导体的固有光药可用于产生更高效的光电器件。

著录项

  • 来源
    《Nature》 |2021年第7885期|404-410|共7页
  • 作者单位

    Univ Calif Los Angeles Dept Chem & Biochem 405 Hilgard Ave Los Angeles CA 90024 USA;

    Univ Calif Los Angeles Dept Chem & Biochem 405 Hilgard Ave Los Angeles CA 90024 USA;

    Univ Calif Los Angeles Dept Chem & Biochem 405 Hilgard Ave Los Angeles CA 90024 USA;

    Univ Calif Los Angeles Dept Chem & Biochem 405 Hilgard Ave Los Angeles CA 90024 USA;

    Univ Calif Los Angeles Dept Mat Sci & Engn Los Angeles CA 90024 USA;

    Univ Calif Santa Cruz Dept Chem & Biochem Santa Cruz CA 95064 USA;

    Hunan Univ Coll Chem & Chem Engn State Key Lab Chemo Biosensing & Chemometr Changsha Peoples R China;

    Univ Calif Santa Cruz Dept Chem & Biochem Santa Cruz CA 95064 USA;

    Univ Calif Los Angeles Calif NanoSyst Inst Los Angeles CA USA;

    Univ Calif Los Angeles Dept Chem & Biochem 405 Hilgard Ave Los Angeles CA 90024 USA|Univ Calif Los Angeles Calif NanoSyst Inst Los Angeles CA USA;

    Univ Calif Los Angeles Dept Chem & Biochem 405 Hilgard Ave Los Angeles CA 90024 USA|Univ Calif Los Angeles Calif NanoSyst Inst Los Angeles CA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号