首页> 外文期刊>Nature >Photocatalytic solar hydrogen production from water on a 100-m~2 scale
【24h】

Photocatalytic solar hydrogen production from water on a 100-m~2 scale

机译:光催化太阳能氢气从水100米〜2级

获取原文
获取原文并翻译 | 示例
           

摘要

The unprecedented impact of human activity on Earth's climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy(1,2). The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale(3). Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up(1,2)-provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m(2) panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst(4), we here report safe operation of a 100-m(2) array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane(5). The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.
机译:人类活动对地球气候的前所未有的影响以及全球能源需求的持续增加使得碳中性能源的发展更加重要。氢是一种可吸引和多功能的能量载体(和重要的和广泛使用的化学品),通过使用阳光通过光催化,通过太阳能或风能驱动的电解(1,2)。最高效的太阳能氢生产方案,将太阳能电池耦合到电解系统,在实验室规模(3)时达到80%的太阳能 - 氢气(STH)能量转换效率。光催化水分达到显着较低的转化效率仅为1%,但系统设计更简单,更便宜,更容易放大(1,2) - 可以安全地处理湿润,化学计量氢和氧产品混合物在野外环境和氢气中恢复。延长了基于改性的铝掺杂钛酸锶颗粒光催化剂(4)的1米(2)面板反应器系统的先前演示,我们在此报告了100米(2)(2)个面板反应器的安全操作使用商业聚酰亚胺膜(5)具有来自湿气产品混合物的自主回收氢的月份。该系统针对安全性和耐用性进行了优化,并剩余的未回收氢气点火上的未抑制,最大的STH为0.76%。虽然氢气产生效率低下,但总体上消耗负良,但我们的研究结果表明,安全,大规模的光催化水分裂和气体收集和分离是可能的。为了使技术经济上可行和实际上有用,基本的下一步是反应堆和过程优化,以显着降低成本,提高STH效率,光催化剂稳定性和气体分离效率。

著录项

  • 来源
    《Nature》 |2021年第7880期|304-307|共4页
  • 作者单位

    Univ Tokyo Off Univ Prof Tokyo Japan;

    Univ Tokyo Off Univ Prof Tokyo Japan;

    Univ Tokyo Inst Engn Innovat Sch Engn Tokyo Japan;

    Japan Technol Res Assoc Artificial Photosynthet C Tokyo Japan|FUJIFILM Corp Chigasaki Kanagawa Japan;

    Univ Tokyo Off Univ Prof Tokyo Japan;

    Univ Tokyo Off Univ Prof Tokyo Japan;

    Univ Tokyo Off Univ Prof Tokyo Japan;

    Japan Technol Res Assoc Artificial Photosynthet C Tokyo Japan|TOTO Ltd Res Inst Chigasaki Kanagawa Japan;

    Japan Technol Res Assoc Artificial Photosynthet C Tokyo Japan|Mitsubishi Chem Corp Sci & Innovat Ctr Yokohama Kanagawa Japan;

    Meiji Univ Sch Sci & Technol Dept Appl Chem Kawasaki Kanagawa Japan;

    Univ Tokyo Off Univ Prof Tokyo Japan;

    Japan Technol Res Assoc Artificial Photosynthet C Tokyo Japan|TOTO Ltd Res Inst Chigasaki Kanagawa Japan|Natl Inst Adv Ind Sci & Technol Global Zero Emiss Res Ctr GZR Tsukuba Ibaraki Japan;

    Univ Tokyo Inst Engn Innovat Sch Engn Tokyo Japan;

    Shinshu Univ Res Initiat Supra Mat Interdisciplinary Cluster Cutting Edge Res Nagano Nagano Japan;

    Mitsubishi Chem Corp Sci & Innovat Ctr Yokohama Kanagawa Japan;

    Univ Tokyo Off Univ Prof Tokyo Japan|Shinshu Univ Res Initiat Supra Mat Interdisciplinary Cluster Cutting Edge Res Nagano Nagano Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号