首页> 外文期刊>Nature >Surface topography dependence of biomolecular hydrophobic hydration.
【24h】

Surface topography dependence of biomolecular hydrophobic hydration.

机译:生物分子疏水水化的表面形貌依赖性。

获取原文
获取原文并翻译 | 示例
           

摘要

Many biomolecules are characterized by surfaces containing extended nonpolar regions, and the aggregation and subsequent removal of such surfaces from water is believed to play a critical role in the biomolecular assembly in cells. A better understanding of the hydrophobic hydration of biomolecules may therefore yield new insights into intracellular assembly. Conventional views hold that the hydration shell of small hydrophobic solutes is clathrate-like, characterized by local cage-like hydrogen-bonding structures and a distinct loss in entropy. The hydration of extended nonpolar planar surfaces, however, appears to involve structures that are orientationally inverted relative to clathrate-like hydration shells, with unsatisfied hydrogen bonds that are directed towards the hydrophobic surface. Here we present computer simulations of the interaction between the polypeptide melittin and water that demonstrate that the two different hydration structures also exist near a biomolecular surface. We find that the two structures are distinguished by a substantial difference in the water-water interaction enthalpy, and that their relative contributions depend strongly on the surface topography of the melittin molecule: clathrate-like structures dominate near convex surface patches, whereas the hydration shell near flat surfaces fluctuates between clathrate-like and less-ordered or inverted structures. The strong influence of surface topography on the structure and free energy of hydrophobic hydration is likely to hold in general, and will be particularly important for the many biomolecules whose surfaces contain convex patches, deep or shallow concave grooves and roughly planar areas.
机译:许多生物分子的特征是表面含有延伸的非极性区域,人们认为这种表面的聚集和随后从水中的去除在细胞中生物分子组装中起着至关重要的作用。因此,对生物分子疏水水合的更好理解可能会为细胞内组装带来新的见解。传统观点认为,小的疏水性溶质的水合壳是笼状的,其特征在于局部笼状的氢键结构和熵的明显损失。然而,延伸的非极性平面表面的水合似乎涉及相对于包合物样水合壳取向反转的结构,其中不满意的氢键指向疏水性表面。在这里,我们目前对多肽蜂毒素与水之间相互作用的计算机模拟表明,这两种不同的水合结构也存在于生物分子表面附近。我们发现这两种结构的区别在于水-水相互作用焓有实质性差异,并且它们的相对贡献在很大程度上取决于蜂毒肽分子的表面形貌:包合物样结构在凸面补丁附近占主导地位,而水合壳接近平坦表面的表面会在类笼形结构和顺序较差或倒置的结构之间波动。一般而言,表面形貌对疏水水合的结构和自由能的强烈影响很可能保持不变,这对于许多生物表面具有凸斑,深或浅凹槽以及大致平坦区域的生物分子来说尤其重要。

著录项

  • 来源
    《Nature》 |1998年第6677期|P.696-699|共4页
  • 作者

    ChengYK; RosskyPJ;

  • 作者单位

    Department of Chemistry and Biochemistry, University of Texas at Austin, 78712-1167, USA.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

    Melitten; Water; 蜂毒肽;

    机译:Melitten;Water;蜂毒肽;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号