...
首页> 外文期刊>Nuclear fusion >Isotope dependence of the type I ELMy H-mode pedestal in JET-ILW hydrogen and deuterium plasmas
【24h】

Isotope dependence of the type I ELMy H-mode pedestal in JET-ILW hydrogen and deuterium plasmas

机译:Inte Elmy H模式基座在Jet-ILW氢气和氘质等离子体中的同位素依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

The pedestal structure, edge transport and linear MHD stability have been analyzed in a series of JET with the ITER-like wall hydrogen (H) and deuterium (D) type Ⅰ ELMy H-mode plasmas. The pedestal pressure is typically higher in D than in H at the same input power and gas rate, with the difference mainly due to lower density in H than in D (Maggi et al (JET Contributors) 2018 Plasma Phys. Control. Fusion 60 014045). A power balance analysis of the pedestal has shown that higher inter-ELM separatrix loss power is required in H than in D to maintain a similar pedestal top pressure. This is qualitatively consistent with a set of interpretative EDGE2D-EIRENE simulations for H and D plasmas, showing that higher edge particle and heat transport coefficients are needed in H than in D to match the experimental profiles. It has also been concluded that the difference in neutral penetration between H and D leads only to minor changes in the upstream density profiles and with trends opposite to experimental observations. This implies that neutral penetration has a minor role in setting the difference between H and D pedestals, but higher ELM and/or inter-ELM transport are likely to be the main players. The interpretative EDGE2D-EIRENE simulations, with simultaneous upstream and outer divertor target profile constraints, have indicated higher separatrix electron temperature in H than in D for a pair of discharges at low fueling gas rate and similar stored energy (which required higher input power in H than in D at the same gas rate). The isotope dependence of linear MHD pedestal stability has been found to be small, but if a higher separatrix temperature is considered in H than in D, this could lead to destabilization of peeling-ballooning modes and shrinking of the stability boundary, qualitatively consistent with the reduced pedestal confinement in H.
机译:在一系列射流中分析了基座结构,边缘传输和线性MHD稳定性,其用浸渍壁氢(H)和氘(D)Ⅰ型Elmy H模式等离子体。 D小座压力在d以相同的输入功率和气速下的H中的差异,差异主要是由于H中的较低密度(Maggi等(喷射贡献者)2018等离子体物理。控制。融合60 014045 )。基座的功率平衡分析表明,H中需要更高的ELM间分离器损耗功率,以保持类似的基座顶部压力。这与H和D等离子体的一组解释性Edge2d-eIrie模拟具有定性,表明,在H中需要更高的边缘粒子和热传输系数以与实验型材相匹配。还有人们已经得出结论,H和D之间的中性渗透差异仅导致上游密度谱的微小变化以及与实验观察相反的趋势。这意味着中立渗透在设定H和D基座之间的差异时具有较小的作用,但是高榆树和/或榆树间运输可能是主要的参与者。具有同时上游和外部偏移的靶轮廓约束的解释性边缘2d-烯烃模拟比在低燃料气体速率和类似存储的能量下的一对放电(其需要更高的输入功率)表示更高的分离器电子温度。比在相同的气息下的d)。已发现线性MHD基座稳定性的同位素依赖性较小,但如果在H中考虑更高的分子温度,这可能导致剥离 - 膨胀模式的稳定性和稳定性边界的缩小,与稳定性边界缩小降低了H.的基座限制

著录项

  • 来源
    《Nuclear fusion》 |2021年第4期|046015.1-046015.17|共17页
  • 作者单位

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland York Plasma Institute Department of Physics University of York York YO10 5DD United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    Max-Planck-Institut fuer Plasmaphysik Boltzmannstrasse 2 D-85748 Garching Germany;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    Institute of Nuclear & Radiological Sciences and Technology Energy & Safety NCSR Demokritos Athens 15310 Greece;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    Oak Ridge National Laboratory Oak Ridge TN United States of America;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    Division of Fusion Plasma Physics KTH Royal Institute of Technology Stockholm Sweden;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland;

    CCFE Culham Science Centre Abingdon OX 14 3DB United Kingdom of Great Britain and Northern Ireland Aalto University 02150 Espoo Finland;

    JET Exploitation Unit Culham Science Centre Abingdon OX14 3DB United Kingdom of Great Britain and Northern Ireland European Commission Brussels Belgium;

    Swiss Plasma Center Ecole Polytechnique Federate de Lausanne Switzerland;

    York Plasma Institute Department of Physics University of York York YO10 5DD United Kingdom of Great Britain and Northern Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tokamak; isotope effect; H-mode; pedestal; confinement; JET-ILW;

    机译:Tokamak;同位素效应;H模式;座;限制;Jet-ILW.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号