首页> 外文期刊>Nuclear fusion >A DT fusion reactor design in field-reversed configuration using normal conductive coils
【24h】

A DT fusion reactor design in field-reversed configuration using normal conductive coils

机译:使用普通导电线圈的场反转配置的DT聚变反应堆设计

获取原文
获取原文并翻译 | 示例
           

摘要

Assuming continued stability, favorable energy confinement time scaling, and an effective current drive and maintenance methods, a feasible DT fusion reactor design is proposed for field-reversed configuration (FRC) which uses normal conductive copper magnetic field coils at room temperature. The reactor has 3 GW fusion power, 1.5 MW m~(-2) neutron wall loading at the first wall, and thermal loading less than 1 MW m~(-2) at diverter plates. Plasma has an almost straight cylindrical shape of 40 m in length and 8.6 m in diameter. FRC can obtain very high beta (over 0.7 in average) and the magnetic field strength of the reactor will be 1.215 T, which can be produced by normal conductive coils having 70 m in length, 17.6 m in diameter, and 1.5 m in thickness with 0.6 effective conductive area ratio. Its Ohmic power loss is ~74 MW, which is less than 10% of the expected electric power output. A scenario to reach ignition from the initial formation is considered. At first, two FRCs are formed at the both ends of the reactor by fast theta-pinch with a negative bias magnetic field 6 m in length and 0.5 m in diameter. The FRCs are accelerated up to 250 km s~(-1) by the gradient of magnetic field strength towards the center of the burning region, collide with each other, and form a single large FRC. Their kinetic energy is converted to thermal energy, and the merged FRC is 10 m in length and 1.8 m in diameter. This FRC plasma is brought to ignition by intensive neutral beam injection (NBI) heating and particle supply. Given 200 s heating duration, the maximum NBI power is ~250 MW before alpha particle heating becomes significant. After ignition, NBI heating is not required, but there is a possibility that some part of equilibrium current must be supplied by the NBI in the MeV region.
机译:假设持续的稳定性,有利的能量限制时间缩放以及有效的电流驱动和维护方法,提出了一种可行的DT聚变反应堆设计,用于在室温下使用普通导电铜磁场线圈的场反转配置(FRC)。该反应堆的聚变功率为3 GW,第一壁的中子壁负荷为1.5 MW m〜(-2),分流板的热负荷小于1 MW m〜(-2)。等离子体具有几乎直的圆柱形状,其长度为40 m,直径为8.6 m。 FRC可以获得非常高的beta(平均超过0.7),反应堆的磁场强度将为1.215 T,这可以由长度为70 m,直径为17.6 m,厚度为1.5 m的普通导电线圈产生,有效导电面积比为0.6。它的欧姆功率损耗约为74 MW,不到预期电功率输出的10%。考虑了从最初的编队达到点火的情况。首先,通过快速θ捏在反应器的两端形成两个FRC,其中带有6 m长和0.5 m直径的负偏置磁场。通过朝向燃烧区域中心的磁场强度梯度,将FRC加速至250 km s〜(-1),相互碰撞,形成一个大的FRC。它们的动能转化为热能,合并的FRC的长度为10 m,直径为1.8 m。通过强烈的中性束注入(NBI)加热和颗粒供应,可以点燃这种FRC等离子体。给定200 s的加热时间,在α粒子加热变得明显之前,最大NBI功率为〜250 MW。点火后,不需要NBI加热,但是有一部分平衡电流必须由MeV区域中的NBI提供。

著录项

  • 来源
    《Nuclear fusion》 |2018年第1期|016004.1-016004.14|共14页
  • 作者单位

    Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

    Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

    Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

    Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

    Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

    Institute of Quantum Science, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

    Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    FRC; DT fusion reactor design; normal conductive coils;

    机译:FRC;DT聚变反应堆设计;普通导电线圈;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号