...
首页> 外文期刊>Nuclear fusion >A theoretical insight into H accumulation and bubble formation by applying isotropic strain on the W-H system under a fusion environment
【24h】

A theoretical insight into H accumulation and bubble formation by applying isotropic strain on the W-H system under a fusion environment

机译:通过在熔融环境下在W-H系统上施加各向同性应变来研究H积累和气泡形成的理论见解

获取原文
获取原文并翻译 | 示例
           

摘要

The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.
机译:氢(H)在钨(W)中的溶解度和气泡形成是在熔融环境下将W用作面向等离子体的组分的关键因素,但目前的数据和机理尚属零散,表明可能忽略了一些重要因素。高能中子辐照的W不可避免地会引起局部应变,这可能会改变H在W中的溶解度。在这里,我们进行了第一性原理计算,以预测各向同性应变下的H溶液行为并结合W中的温度效应,发现在300-1800 K的温度范围内,各向同性拉伸/压缩应变可促进/阻碍间隙晶格中的H溶解度。计算得出的H溶解度与实验结果吻合良好。总之,我们先前的各向异性应变结果,除了各向同性压缩外,各向同性拉伸和各向异性拉伸/压缩都增强了H溶液,从而揭示了W中H积累和气泡形成的重要物理意义:应变可以增强H的溶解度,从而导致H气泡的初步形核进一步导致H气泡周围的W晶格局部应变,进而改善了应变区域的H溶解度,从而通过W中的链反应效应促进H气泡的连续生长。该结果可以即使暴露于低能H等离子体的W中没有产生辐射损伤,也可以解释H气泡的形成。

著录项

  • 来源
    《Nuclear fusion》 |2018年第4期|046014.1-046014.10|共10页
  • 作者单位

    Department of Physics, Beihang University, Beijing 100191, China;

    Department of Physics, Yantai University, Yantai 264005, China;

    Department of Physics, Beihang University, Beijing 100191, China;

    Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;

    Department of Physics, Beihang University, Beijing 100191, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tungsten; hydrogen; temperature effect; first-principles calculations;

    机译:钨氢;温度效应第一性原理计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号