...
首页> 外文期刊>Nuclear fusion >Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET
【24h】

Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET

机译:在JET上混合H / D同位素等离子体中增强的离子粒子传输的观察

获取原文
获取原文并翻译 | 示例
           

摘要

Particle transport in tokamak plasmas has been intensively studied in the past, particularly in relation to density peaking and the presence of anomalous inward particle convection in L- and H-modes. While in the L-mode case the presence of the anomalous inward pinch has previously been unambiguously demonstrated, particle transport in the H-mode was unclear. The main difficulty of such studies is that particle diffusion and convection could not be measured independently in steady-state conditions in the presence of a core particle flux. Therefore, it is usually not possible to separate the transport effect(inward convection), from the source effect (slow diffusion of particles introduced to the plasma core by neutral beam injection heating). In this work we describe experiments done on JET with mixtures of two hydrogenic isotopes: H and D. It is demonstrated that in the case of several ion species, convection and diffusion can be separated in a steady plasma without implementation of perturbative techniques such as gas puff modulation. Previous H-mode density peaking studies suggested that for this relatively high electron collisionality plasma scenario, the observed density gradient is mostly driven by particle source and low particle diffusivity D < 0.5 * χ_(eff). Transport coefficients derived from observation of the isotope profiles in the new experiments far exceed that value-ion particle diffusion is found to be as high as D ≥ 2 * χ_(eff). combined with a strong inward convection. Apparent disagreement with previous findings was explained by significantly faster transport of ion components with respect to the electrons, which could not be observed in a single main ion species plasma. This conclusion is confirmed by quasilinear gyrokinetic simulations.
机译:过去已经对托卡马克等离子体中的粒子传输进行了深入研究,特别是在L和H模式下,密度峰值和异常向内粒子对流的存在方面。虽然在L模式下已经明确证实了异常向内收缩的存在,但在H模式下的颗粒传输却不清楚。此类研究的主要困难在于,在存在核心粒子通量的情况下,无法在稳态条件下单独测量粒子的扩散和对流。因此,通常不可能将传输效果(向内对流)与源效果(通过中性束注入加热引入等离子体芯的粒子缓慢扩散)分开。在这项工作中,我们描述了使用两种氢同位素:H和D的混合物在JET上进行的实验。事实证明,在几种离子物种的情况下,对流和扩散可以在稳定的等离子体中分离,而无需使用诸如气体的扰动技术泡芙调制。先前的H模式密度峰值研究表明,对于这种相对较高的电子碰撞性等离子体场景,观察到的密度梯度主要由粒子源和较低的粒子扩散率D <0.5 *χ_(eff)驱动。在新实验中,通过观察同位素分布得出的传输系数远远超过了发现值离子粒子扩散高达D≥2 *χ_(eff)的程度。结合强烈的内向对流。明显不同意先前的发现是由于离子组分相对于电子的传输速度显着加快,这在单个主要离子物种等离子体中无法观察到。准线性陀螺动力学模拟证实了这一结论。

著录项

  • 来源
    《Nuclear fusion》 |2018年第7期|076022.1-076022.10|共10页
  • 作者单位

    United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom of Great Britain and Northern Ireland;

    United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom of Great Britain and Northern Ireland;

    Department of Atomic, Molecular and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville, Spain;

    United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom of Great Britain and Northern Ireland;

    United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom of Great Britain and Northern Ireland;

    VTT, Espoo, Finland;

    VTT, Espoo, Finland;

    DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, Netherlands;

    DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, Netherlands;

    CEA, IRFM, F-13108 Saint Paul Lez Durance, France;

    Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma; tokamak; particle transport;

    机译:等离子体;托卡马克颗粒运输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号